PD Dr. habil. Tadeusz Michal Litak

Scopus Autoren ID: 8865100500



Organisationseinheit


Lehrstuhl für Informatik 8 (Theoretische Informatik)


Publikationen (Download BibTeX)

Go to first page Go to previous page 1 von 2 Go to next page Go to last page

Holliday, W.H., & Litak, T.M. (2019). COMPLETE ADDITIVITY AND MODAL INCOMPLETENESS. Review of Symbolic Logic, 12(3), 487-535. https://dx.doi.org/10.1017/S1755020317000259
Litak, T.M., & Visser, A. (2018). Lewis meets Brouwer: Constructive strict implication. Indagationes Mathematicae-New Series, 29(1), 36-90. https://dx.doi.org/10.1016/j.indag.2017.10.003
Litak, T.M., Pattinson, D., Sano, K., & Schröder, L. (2018). Model Theory and Proof Theory of Coalgebraic Predicate Logic. Logical Methods in Computer Science, 14(1). https://dx.doi.org/10.23638/LMCS-14(1:22)2018
Holliday, W., & Litak, T.M. (2018). One Modal Logic to Rule Them All? In Guram Bezhanishvili, Giovanna D'Agostino, George Metcalfe, Thomas Studer (Eds.), Advances in Modal Logic 2018 (pp. 367-386). Bern, CH: London, UK: College Publications.
Milius, S., & Litak, T.M. (2017). Guard Your Daggers and Traces: Properties of Guarded (Co-)recursion. Fundamenta Informaticae, 150, 407-449. https://dx.doi.org/10.3233/FI-2017-1475
Litak, T.M., Polzer, M., & Rabenstein, U. (2017). Negative Translations and Normal Modality. In Dale Miller (Eds.), Proceedings of the 2nd International Conference on Formal Structures for Computation and Deduction (FSCD 2017) (pp. 27:1--27:18). Oxford, GB: Dagstuhl, Germany: Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik.
Schröder, L., Litak, T.M., & Pattinson, D. (2015). A van Benthem/Rosen Theorem for Coalgebraic Predicate Logic. Journal of Logic and Computation, advance access, -. https://dx.doi.org/10.1093/logcom/exv043
Litak, T.M., Mikulás, S., & Hidders, J. (2015). Relational Lattices: From Databases to Universal Algebra. Journal of Logical and Algebraic Methods in Programming, 85(4), 540-573. https://dx.doi.org/10.1016/j.jlamp.2015.11.008
Litak, T.M. (2014). Constructive modalities with provability smack. In Guram Bezhanishvili (Eds.), Leo Esakia on duality in modal and intuitionistic logics. (pp. 179-208). Berlin/Heidelberg: Springer.
Litak, T.M., Mikulás, S., & Hidders, J. (2014). Relational Lattices. In 14th International Conference on Relational and Algebraic Methods in Computer Science, RAMiCS 2014; Marienstatt; Germany; 28 April 2014 through 1 May 2014 (pp. 327-343). Marienstatt, DE: Springer.

Zuletzt aktualisiert 2019-15-08 um 23:51