Prof. Dr. Florian Frank


Persönliche Webseite: http://www.frank.ink
Scopus Autoren ID: 57193414063



Organisationseinheit


Lehrstuhl für Angewandte Mathematik (Modellierung und Numerik)
Professur für Angewandte Mathematik (Mathematische Modellierung)


Mitarbeit in Forschungsprojekten


Der Einfluss von Kolloiden auf Wasserfluss und Stofftransport in Böden: Randaspekt oder Schlüsselprozess?
Prof. Dr. Peter Knabner
(01.11.2006 - 31.12.2009)

(Kontrollierter natürlicher Rückhalt und Abbau von Schadstoffen bei der Sanierung kontaminierter Böden und Grundwässer (BMBF Förderschwerpunkt KORA)):
Modellierung des reaktiven Transports von Schadstoffen in der (un-)gesättigten Bodenzone zur Prognose der natürlichen Selbstreinigung
Dr. Alexander Prechtel; Prof. Dr. Peter Knabner
(01.04.2004 - 31.12.2008)


Publikationen (Download BibTeX)

Go to first page Go to previous page 1 von 2 Go to next page Go to last page

Liu, C., Frank, F., Alpak, F.O., & Rivière, B. (2019). An interior penalty discontinuous Galerkin approach for 3D incompressible Navier–Stokes equation for permeability estimation of porous media. Journal of Computational Physics, 396, 669-686. https://dx.doi.org/10.1016/j.jcp.2019.06.052
Liu, C., Frank, F., & Rivière, B. (2019). Numerical error analysis for nonsymmetric interior penalty discontinuous Galerkin method of Cahn–Hilliard equation. Numerical Methods For Partial Differential Equations. https://dx.doi.org/10.1002/num.22362
Alpak, F.O., Samardžić, A., & Frank, F. (2018). A distributed parallel direct simulator for pore-scale two-phase flow on digital rock images using a finite difference implementation of the phase-field method. Journal of Petroleum Science and Engineering, 166, 806–824. https://dx.doi.org/10.1016/j.petrol.2017.11.022
Frank, F., Liu, C., Alpak, F.O., & Rivière, B. (2018). A finite volume/discontinuous Galerkin method for the advective Cahn–Hilliard equation with degenerate mobility on porous domains stemming from micro-CT imaging. Computational Geosciences, 22(2), 543–563. https://dx.doi.org/10.1007/s10596-017-9709-1
Frank, F., Liu, C., Scanziani, A., Alpak, F.O., & Rivière, B. (2018). An energy-based equilibrium contact angle boundary condition on jagged surfaces for phase-field methods. Journal of Colloid and Interface Science, 523, 282–291. https://dx.doi.org/10.1016/j.jcis.2018.02.075
Frank, F., Liu, C., Alpak, F.O., Berg, S., & Rivière, B. (2018). Direct numerical simulation of flow on pore-scale images using the phase-field method. Spe Journal, 23(5), 1–18. https://dx.doi.org/10.2118/182607-PA
Mu, X., Frank, F., Rivière, B., Alpak, F.O., & Chapman, W.G. (2018). Mass-conserved density gradient theory model for nucleation process. Industrial & Engineering Chemistry Research. https://dx.doi.org/10.1021/acs.iecr.8b03389
Frank, F., & Knabner, P. (2017). Convergence analysis of a BDF2/mixed finite element discretization of a Darcy–Nernst–Planck–Poisson system. Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique Et Analyse Numerique, 51(5), 1883-1902. https://dx.doi.org/10.1051/m2an/2017002
Thiele, C., Araya-Polo, M., Alpak, F.O., Rivière, B., & Frank, F. (2017). Inexact hierarchical scale separation: a two-scale approach for linear systems from discontinuous Galerkin discretizations. Computers & Mathematics With Applications, 74(8), 1769–1778. https://dx.doi.org/10.1016/j.camwa.2017.06.025
Mu, X., Frank, F., Alpak, F.O., & Chapman, W.G. (2017). Stabilized density gradient theory algorithm for modeling interfacial properties of pure and mixed systems. Fluid Phase Equilibria, 435, 118–130. https://dx.doi.org/10.1016/j.fluid.2016.11.024

Zuletzt aktualisiert 2019-22-01 um 17:51