Prof. Dr. Peter Knabner



Organisation


Lehrstuhl für Angewandte Mathematik (Modellierung und Numerik)


Awards / Honours


2009 : Prize for “the most innovative method“ for the solution of the MoMaS benchmark problem on reactive problems



Project lead

Go to first page Go to previous page 1 of 2 Go to next page Go to last page

MPFA and MHFE methods for flow and transport in porous media
Prof. Dr. Peter Knabner
(01/01/2012 - 31/12/2013)

Development of filtration systems for air cleaning from nanoparticles, organic admixtures and bacteria with the help of numerical simulations
Prof. Dr. Peter Knabner
(01/10/2009 - 30/09/2011)

Efficient Numerical Methods for Large Partial Differential Complementarity Systems arising in Multispecies Reactive Transport with Minerals in Porous Media
Prof. Dr. Peter Knabner; PD Dr. Serge Kräutle
(01/01/2007 - 31/12/2011)

The Influence of Colloids on Water Flow and Solute Transport in Soils: Side Effect or Key Process?
Prof. Dr. Peter Knabner
(01/11/2006 - 31/12/2009)

(Identifikation, Optimierung und Steuerung für technische Anwendungen):
Identifizierung nichtlinearer Koeffizientenfunktionen des reaktiven Transports durch poröse Medien unter Verwendung rekursiver und formfreier Ansätze
Prof. Dr. Peter Knabner
(01/06/2006 - 30/04/2010)


Project member


IntComSin: Interfaces, complex structures, and singular limits in continuum mechanics
Prof. Dr. Günther Grün
(01/04/2018 - 30/09/2022)


Publications (Download BibTeX)

Go to first page Go to previous page 1 of 17 Go to next page Go to last page

Brunner, F., & Knabner, P. (2019). A global implicit solver for miscible reactive multiphase multicomponent flow in porous media. Computational Geosciences, 23(1), 127-148. https://dx.doi.org/10.1007/s10596-018-9788-7
Schulz, R., Ray, N., Zech, S., Rupp, A., & Knabner, P. (2019). Beyond Kozeny-Carman: Predicting the Permeability in Porous Media. Transport in Porous Media. https://dx.doi.org/10.1007/s11242-019-01321-y
Reuter, B., Rupp, A., Aizinger, V., & Knabner, P. (2019). Discontinuous Galerkin method for coupling hydrostatic free surface flows to saturated subsurface systems. Computers & Mathematics With Applications, 77(9), 2291-2309. https://dx.doi.org/10.1016/j.camwa.2018.12.020
Class, H., Knabner, P., Pop, I.S., & Radu, F.A. (2019). Multiphase, multicomponent flow in deformable porous media: modelling and simulation (Dedicated to Prof. Dr.-Ing. Rainer Helmig on the occasion of his 60th birthday). Computational Geosciences, 23(2), 203-205. https://dx.doi.org/10.1007/s10596-019-9814-4
Wacker, P.K., & Knabner, P. (2019). Wavelet-Based Priors Accelerate Maximum-a-Posteriori Optimization in Bayesian Inverse Problems. Methodology and Computing in Applied Probability, 1-27. https://dx.doi.org/10.1007/s11009-019-09736-2
Rupp, A., Knabner, P., & Dawson, C. (2018). A local discontinuous Galerkin scheme for Darcy flow with internal jumps. Computational Geosciences, 22(4), 1149-1159. https://dx.doi.org/10.1007/s10596-018-9743-7
Aizinger, V., Rupp, A., Schütz, J., & Knabner, P. (2018). Analysis of a mixed discontinuous Galerkin method for instationary Darcy flow. Computational Geosciences, 22(1), 179-194. https://dx.doi.org/10.1007/s10596-017-9682-8
Gahn, M., Neuss-Radu, M., & Knabner, P. (2018). EFFECTIVE INTERFACE CONDITIONS FOR PROCESSES THROUGH THIN HETEROGENEOUS LAYERS WITH NONLINEAR TRANSMISSION AT THE MICROSCOPIC BULK-LAYER INTERFACE. Networks and Heterogeneous Media, 13(4), 609-640. https://dx.doi.org/10.3934/nhm.2018028
Jaust, A., Reuter, B., Aizinger, V., Schütz, J., & Knabner, P. (2018). FESTUNG: A MATLAB/GNU Octave toolbox for the discontinuous Galerkin method. Part III: Hybridized discontinuous Galerkin (HDG) formulation. Computers & Mathematics With Applications, 75(12), 4505-4533. https://dx.doi.org/10.1016/j.camwa.2018.03.045
Ray, N., Rupp, A., Schulz, R., & Knabner, P. (2018). Old and New Approaches Predicting the Diffusion in Porous Media. Transport in Porous Media, 124(3), 803-824. https://dx.doi.org/10.1007/s11242-018-1099-x

Last updated on 2016-18-06 at 04:27