Roland Maas



Organisation


Professur für Nachrichtentechnik
Lehrstuhl für Multimediakommunikation und Signalverarbeitung


Awards / Honours


2014 : Best Paper Award
2014 : Best Student Paper Award
2011 : Lehrevaluation - Bestenliste


Publications (Download BibTeX)

Go to first page Go to previous page 1 of 4 Go to next page Go to last page

Hümmer, C., Hofmann, C., Maas, R., & Kellermann, W. (2018). Estimating parameters of nonlinear systems using the elitist particle filter based on evolutionary strategies. IEEE/ACM Transactions on Audio, Speech and Language Processing, 26(3), 595-608.
Kinoshita, K., Delcroix, M., Gannot, S., Habets, E., Haeb-Umbach, R., Kellermann, W.,... Yoshioka, T. (2017). The REVERB challenge: A benchmark task for reverberation-robust ASR techniques. In Shinji Watanabe, Marc Delcroix, Florian Metze, John R. Hershey (Eds.), New Era for Robust Speech Recognition. (pp. 345 - 354). Springer International Publishing AG 2017.
Hümmer, C., Schwarz, A., Maas, R., Barfuß, H., Astudillo, R.F., & Kellermann, W. (2016). A new uncertainty decoding scheme for DNN-HMM hybrid systems with multichannel speech enhancement. In Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 5760-5764). Shanghai, CN: Institute of Electrical and Electronics Engineers Inc..
Kinoshita, K., Delcroix, M., Gannot, S., Habets, E., Haeb-Umbach, R., Kellermann, W.,... Yoshioka, T. (2016). A summary of the REVERB challenge: State-of-the-art and remaining challenges in reverberant speech processing research. Eurasip Journal on Advances in Signal Processing, 2016(1), 1-19. https://dx.doi.org/10.1186/s13634-016-0306-6
Maas, R. (2016). Uncertainty Decoding for Reverberation-Robust Automatic Speech Recognition (Dissertation).
Hümmer, C., Maas, R., Hofmann, C., & Kellermann, W. (2015). A Bayesian network approach to linear and nonlinear acoustic echo cancellation. Eurasip Journal on Advances in Signal Processing, 2015(1), 1-11. https://dx.doi.org/10.1186/s13634-015-0282-2
Maas, R., Hümmer, C., Sehr, A., & Kellermann, W. (2015). A Bayesian view on acoustic model-based techniques for robust speech recognition. Eurasip Journal on Advances in Signal Processing, 2015(1), 1-16. https://dx.doi.org/10.1186/s13634-015-0287-x
Bürger, M., Maas, R., Löllmann, H., & Kellermann, W. (2015). Multizone sound field synthesis based on the joint optimization of the sound pressure and particle velocity vector on closed contours. In Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA) (pp. 1-5). New Paltz, NY, US.
Schwarz, A., Hümmer, C., Maas, R., & Kellermann, W. (2015). Real-time dereverberation for deep neural network speech recognition. In Proceedings of the Jahrestagung für Akustik (DAGA) (pp. 139-142). Nuremberg, DE: Nuremberg, Germany.
Schwarz, A., Hümmer, C., Maas, R., & Kellermann, W. (2015). Spatial diffuseness features for DNN-based speech recognition in noisy and reverberant environments. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (pp. 4380-4384). Brisbane, AU: Institute of Electrical and Electronics Engineers Inc..

Last updated on 2019-15-03 at 22:56