Prof. Dr. Lutz Schröder


Lehrstuhl für Informatik 8 (Theoretische Informatik)

Project lead

Go to first page Go to previous page 2 of 2 Go to next page Go to last page

GenMod: Coalgebra-based generic decision procedures and complexity bounds for modal and hybrid logics
Prof. Dr. Lutz Schröder
(01/05/2008 - 31/08/2019)

Publications (Download BibTeX)

Go to first page Go to previous page 1 of 6 Go to next page Go to last page

Goncharov, S., Rauch, C., & Schröder, L. (2018). A Metalanguage for Guarded Iteration. In 11187. Stellenbosch, South Africa: Springer International Publishing.
Wild, P., Schröder, L., Pattinson, D., & König, B. (2018). A van Benthem theorem for fuzzy modal logic. (pp. 909-918). Institute of Electrical and Electronics Engineers Inc..
Schröder, L., & Venema, Y. (2018). Completeness of Flat Coalgebraic Fixpoint Logics. ACM Transactions on Computational Logic, 19(1).
Goncharov, S., & Schröder, L. (2018). Guarded Traced Categories. (pp. 313-330). Springer Verlag.
Litak, T.M., Pattinson, D., Sano, K., & Schröder, L. (2018). Model Theory and Proof Theory of Coalgebraic Predicate Logic. Logical Methods in Computer Science, 14(1).
Hausmann, D., Schröder, L., & Deifel, H.-P. (2018). Permutation games for the weakly aconjunctive μ -calculus. (pp. 361-378). Springer Verlag.
Dorsch, U., Milius, S., Schröder, L., & Wißmann, T. (2018). Predicate Liftings and Functor Presentations in Coalgebraic Expression Languages. In Corina Cîrstea (Eds.), Proc.~Coalgebraic Methods in Computer Science (CMCS'18). Thessaloniki: Springer.
Goncharov, S., Schröder, L., Rauch, C., & Jakob, J. (2018). Unguarded Recursion on Coinductive Resumptions. Logical Methods in Computer Science, 14(3).
Wild, P., & Schröder, L. (2017). A Characterization Theorem for a Modal Description Logic. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017 (pp. 1304--1310).
Deifel, H.-P., Göttlinger, M., Milius, S., Schröder, L., Dietrich, C., & Lohmann, D. (2017). Automatic verification of application-tailored OSEK kernels. In 2017 Formal Methods in Computer Aided Design, FMCAD 2017, Vienna, Austria, October 2-6, 2017 (pp. 196--203). IEEE.

Last updated on 2016-05-05 at 05:35