Prof. Dr. Björn Eskofier

Scopus Autoren ID: 26428080900



Organisationseinheit


Stiftungs-Juniorprofessur für Sportinformatik (Digital Sports)
Lehrstuhl für Informatik 14 (Maschinelles Lernen und Datenanalytik)


Preise / Auszeichnungen


2018 : Best Student Paper Award
2016 : IEEE EMBS Icehouse Challenge
2012 : Dr. Ahmed Elsaify Memorial Runner-Up Paper Award



Projektleitung

Go to first page Go to previous page 1 von 7 Go to next page Go to last page

MOBILISE-D: Connecting digital mobility assessment to clinical outcomes for regulatory and clinical endorsement
Prof. Dr. Björn Eskofier; Dr.-Ing. Felix Kluge
(01.04.2019 - 31.03.2024)

(Digital Twin - holistische Beschreibung und Bewertung von Athleten):
Digital Twin: Digital Twin - Neuartige digitale Datenfusionsalgorithmen und immersive Interaktionskonzepte für die holistische Beschreibung und Bewertung von Athleten durch selbstlernende Systeme
Prof. Dr. Björn Eskofier
(01.12.2018 - 31.05.2021)

Analysis and Modelling of p2p Security for Future Patient-centered Healthcare Ecosystem
Prof. Dr. Björn Eskofier
(01.10.2018 - 30.09.2021)

Klassifizierung von Stressreaktions-Mustern induziert durch akuten Stress
Prof. Dr. Björn Eskofier
(01.09.2018)

Anwendung von Deep Learning für Signalanalysen
Prof. Dr. Björn Eskofier
(01.07.2018 - 30.06.2021)


Mitarbeit in Forschungsprojekten

Go to first page Go to previous page 1 von 2 Go to next page Go to last page

Aufbau einer Methodenplattform zur Analyse von Körpergerüchen
Dr. Helene Loos
(01.04.2019 - 31.03.2021)

Klassifizierung von Stressreaktions-Mustern induziert durch akuten Stress
Prof. Dr. Björn Eskofier
(01.09.2018)

Anwendung von Deep Learning für Signalanalysen
Prof. Dr. Björn Eskofier
(01.07.2018 - 30.06.2021)

moveIT: A novel digital health pathway enables healthcare technologies for gait&falls in Parkinson’s disease
Prof. Dr. Björn Eskofier; Prof. Dr. Jochen Klucken
(01.01.2018 - 31.12.2018)

BayMed-mGL: Mobile GaITLab: Algorithmik für den Einsatz im Patientenalltag
Prof. Dr. Jochen Klucken; Prof. Dr. Björn Eskofier
(01.08.2017 - 31.01.2019)


Weitere Forschungsaktivitäten


Vortragstätigkeit
Prof. Dr. Björn Eskofier; Stefan Gradl
Wearable Computing Systems and Machine Learning for Sports Science Research


Publikationen (Download BibTeX)

Go to first page Go to previous page 1 von 21 Go to next page Go to last page

Wanner, P., Schmautz, T., Kluge, F., Eskofier, B., Pfeifer, K., & Steib, S. (2019). Ankle angle variability during running in athletes with chronic ankle instability and copers. Gait & Posture, 68, 329–334.
Gradl, S., Wirth, M., Richer, R., Rohleder, N., & Eskofier, B. (2019). An Overview of the Feasibility of Permanent, Real-Time, Unobtrusive Stress Measurement with Current Wearables. In Proceedings of the EAI International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth '19). Trento, IT.
Wanner, P., Schmautz, T., Kluge, F., Eskofier, B., Pfeifer, K., & Steib, S. (2019, January). Athletes with chronic ankle instability demonstrate altered ankle angle variability during running compared to copers. Paper presentation at Sportmotorik 2019. Adaptation, Lernen und virtuelle Welten, Bern, CH.
Abel, L., Richer, R., Küderle, A., Gradl, S., Eskofier, B., & Rohleder, N. (2019). Classification of Acute Stress-Induced Response Patterns. In ACM (Eds.), Proceedings of the EAI International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth '19). Trento, IT.
Steib, S., Klamroth, S., Gaßner, H., Pasluosta, C.F., Eskofier, B., Winkler, J.,... Pfeifer, K. (2019). Effects of perturbed treadmill training on Parkinsonian gait: time-course, sustainability, and transfer effects. In Sportmotorik 2019. Adaptation, Lernen und virtuelle Welten. Abstractband zur 16. Jahrestagung der dvs-Sektion Sportmotorik vom 16.-18. Januar 2019 in Bern. Bern, CH.
Steib, S., Klamroth, S., Gaßner, H., Pasluosta, C.F., Eskofier, B., Winkler, J.,... Pfeifer, K. (2019). Exploring gait adaptations to perturbed and conventional treadmill training in Parkinson’s disease: Time-course, sustainability, and transfer. Human Movement Science. https://dx.doi.org/10.1016/j.humov.2019.01.007
Martindale, C., Sprager, S., & Eskofier, B. (2019). Hidden Markov Model-Based Smart Annotation for Benchmark Cyclic Activity Recognition Database Using Wearables. Sensors, 198. https://dx.doi.org/10.3390/s19081820
Facco Rodrigues, V., da Rosa Righi, R., Andre da Costa, C., Eskofier, B., & Maier, A. (2019). On Providing Multi-Level Quality of Service for Operating Rooms of the Future. Sensors, 19(10). https://dx.doi.org/10.3390/s19102303
Dorschky, E., Krüger, D., Kurfess, N., Schlarb, H., Wartzack, S., Eskofier, B., & van den Bogert, A.J. (2019). Optimal control simulation predicts effects of midsole materials on energy cost of running. Computer Methods in Biomechanics and Biomedical Engineering. https://dx.doi.org/10.1080/10255842.2019.1601179
Maier, J., Black, M., Hall, M., Choi, J.-H., Levenston, M., Gold, G.,... Maier, A. (2019). Smooth Ride: Low-Pass Filtering of Manual Segmentations Improves Consensus. In Bildverarbeitung für die Medizin 2019 (pp. 86-91). Lübeck, DE: Springer Fachmedien Wiesbaden.

Zuletzt aktualisiert 2019-22-01 um 17:51