Prof. Dr. Björn Eskofier

Scopus Author ID: 26428080900



Organisation


Stiftungs-Juniorprofessur für Sportinformatik (Digital Sports)
Lehrstuhl für Informatik 14 (Maschinelles Lernen und Datenanalytik)


Awards / Honours


2018 : Best Student Paper Award
2016 : IEEE EMBS Icehouse Challenge
2012 : Dr. Ahmed Elsaify Memorial Runner-Up Paper Award



Project lead

Go to first page Go to previous page 1 of 7 Go to next page Go to last page

MOBILISE-D: Connecting digital mobility assessment to clinical outcomes for regulatory and clinical endorsement
Prof. Dr. Björn Eskofier; Dr.-Ing. Felix Kluge
(01/04/2019 - 31/03/2024)

(Digital Twin - holistische Beschreibung und Bewertung von Athleten):
Digital Twin: Digital Twin – Novel data fusion algorithms and immersive interaction concepts for the holistic description and evaluation of athletes through self-learning systems
Prof. Dr. Björn Eskofier
(01/12/2018 - 31/05/2021)

Analysis and Modelling of p2p Security for Future Patient-centered Healthcare Ecosystem
Prof. Dr. Björn Eskofier
(01/10/2018 - 30/09/2021)

Classification of Acute Stress-Induced Response Patterns
Prof. Dr. Björn Eskofier
(01/09/2018)

Applications of Deep Learning for Signal Analysis
Prof. Dr. Björn Eskofier
(01/07/2018 - 30/06/2021)


Project member

Go to first page Go to previous page 1 of 2 Go to next page Go to last page

Human body odours: exploring chemical signatures
Dr. Helene Loos
(01/04/2019 - 31/03/2021)

Classification of Acute Stress-Induced Response Patterns
Prof. Dr. Björn Eskofier
(01/09/2018)

Applications of Deep Learning for Signal Analysis
Prof. Dr. Björn Eskofier
(01/07/2018 - 30/06/2021)

moveIT: A novel digital health pathway enables healthcare technologies for gait&falls in Parkinson’s disease
Prof. Dr. Björn Eskofier; Prof. Dr. Jochen Klucken
(01/01/2018 - 31/12/2018)

BayMed-mGL: Mobile GaITLab: Algorithmik für den Einsatz im Patientenalltag
Prof. Dr. Jochen Klucken; Prof. Dr. Björn Eskofier
(01/08/2017 - 31/01/2019)


Other Research Activities


Speech / Talk
Prof. Dr. Björn Eskofier; Stefan Gradl
Wearable Computing Systems and Machine Learning for Sports Science Research


Publications (Download BibTeX)

Go to first page Go to previous page 1 of 21 Go to next page Go to last page

Wanner, P., Schmautz, T., Kluge, F., Eskofier, B., Pfeifer, K., & Steib, S. (2019). Ankle angle variability during running in athletes with chronic ankle instability and copers. Gait & Posture, 68, 329–334.
Gradl, S., Wirth, M., Richer, R., Rohleder, N., & Eskofier, B. (2019). An Overview of the Feasibility of Permanent, Real-Time, Unobtrusive Stress Measurement with Current Wearables. In Proceedings of the EAI International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth '19). Trento, IT.
Wanner, P., Schmautz, T., Kluge, F., Eskofier, B., Pfeifer, K., & Steib, S. (2019, January). Athletes with chronic ankle instability demonstrate altered ankle angle variability during running compared to copers. Paper presentation at Sportmotorik 2019. Adaptation, Lernen und virtuelle Welten, Bern, CH.
Abel, L., Richer, R., Küderle, A., Gradl, S., Eskofier, B., & Rohleder, N. (2019). Classification of Acute Stress-Induced Response Patterns. In ACM (Eds.), Proceedings of the EAI International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth '19). Trento, IT.
Steib, S., Klamroth, S., Gaßner, H., Pasluosta, C.F., Eskofier, B., Winkler, J.,... Pfeifer, K. (2019). Effects of perturbed treadmill training on Parkinsonian gait: time-course, sustainability, and transfer effects. In Sportmotorik 2019. Adaptation, Lernen und virtuelle Welten. Abstractband zur 16. Jahrestagung der dvs-Sektion Sportmotorik vom 16.-18. Januar 2019 in Bern. Bern, CH.
Steib, S., Klamroth, S., Gaßner, H., Pasluosta, C.F., Eskofier, B., Winkler, J.,... Pfeifer, K. (2019). Exploring gait adaptations to perturbed and conventional treadmill training in Parkinson’s disease: Time-course, sustainability, and transfer. Human Movement Science. https://dx.doi.org/10.1016/j.humov.2019.01.007
Martindale, C., Sprager, S., & Eskofier, B. (2019). Hidden Markov Model-Based Smart Annotation for Benchmark Cyclic Activity Recognition Database Using Wearables. Sensors, 198. https://dx.doi.org/10.3390/s19081820
Dorschky, E., Krüger, D., Kurfess, N., Schlarb, H., Wartzack, S., Eskofier, B., & van den Bogert, A.J. (2019). Optimal control simulation predicts effects of midsole materials on energy cost of running. Computer Methods in Biomechanics and Biomedical Engineering. https://dx.doi.org/10.1080/10255842.2019.1601179
Maier, J., Black, M., Hall, M., Choi, J.-H., Levenston, M., Gold, G.,... Maier, A. (2019). Smooth Ride: Low-Pass Filtering of Manual Segmentations Improves Consensus. In Bildverarbeitung für die Medizin 2019 (pp. 86-91). Lübeck, DE: Springer Fachmedien Wiesbaden.
Gaßner, H., Raccagni, C., Eskofier, B., Klucken, J., & Wenning, G.K. (2019). The Diagnostic Scope of Sensor-Based Gait Analysis in Atypical Parkinsonism: Further Observations. Frontiers in Neurology, 10. https://dx.doi.org/10.3389/fneur.2019.00005

Last updated on 2019-22-01 at 17:51