Prof. Dr. Björn Eskofier

Scopus Author ID: 26428080900



Organisation


Stiftungs-Juniorprofessur für Sportinformatik (Digital Sports)
Lehrstuhl für Informatik 14 (Maschinelles Lernen und Datenanalytik)


Awards / Honours


2018 : Best Student Paper Award
2016 : IEEE EMBS Icehouse Challenge
2012 : Dr. Ahmed Elsaify Memorial Runner-Up Paper Award



Project lead

Go to first page Go to previous page 1 of 6 Go to next page Go to last page

Applications of Deep Learning for Signal Analysis
Prof. Dr. Björn Eskofier
(01/07/2018 - 30/06/2021)

Open Badges: An Open-Source Sensor Platform for Analysis of Social Interactions and Group Dynamics
Prof. Dr. Björn Eskofier; Prof. Dr. Alex Pentland
(30/05/2018 - 30/11/2018)

VR Amblyopia Trainer
Prof. Dr. Björn Eskofier
(01/04/2018 - 31/12/2019)

HOOP: mHealth tOol for parkinsOn’s disease training and rehabilitation at Patient’s home
Prof. Dr. Björn Eskofier
(01/02/2018 - 31/01/2019)

Gait analysis in geriatrics using mobile sensor systems and machine learning for fall prediction
Prof. Dr. Björn Eskofier; Prof. Dr. Jochen Klucken
(15/01/2018 - 15/01/2021)


Project member

Go to first page Go to previous page 1 of 2 Go to next page Go to last page

Applications of Deep Learning for Signal Analysis
Prof. Dr. Björn Eskofier
(01/07/2018 - 30/06/2021)

moveIT: A novel digital health pathway enables healthcare technologies for gait&falls in Parkinson’s disease
Prof. Dr. Jochen Klucken
(01/01/2018 - 31/12/2018)

BayMed-mGL: Mobile GaITLab: Algorithmik für den Einsatz im Patientenalltag
Prof. Dr. Björn Eskofier; Prof. Dr. Jochen Klucken
(01/08/2017 - 31/01/2019)

C4H - Gesamt: Capital4Health
Prof. Dr. Alfred Rütten
(01/02/2015 - 31/01/2018)

ESI 2: ESI-Anwendungszentrum für die digitale Automatisierung, den digitalen Sport und die Automobilsensorik der Zukunft
Prof. Dr.-Ing. Jürgen Teich
(01/01/2015 - 31/12/2018)


Other Research Activities


Speech / Talk
Prof. Dr. Björn Eskofier; Stefan Gradl
Wearable Computing Systems and Machine Learning for Sports Science Research


Publications (Download BibTeX)

Go to first page Go to previous page 1 of 19 Go to next page Go to last page

Wirth, M., Gradl, S., Poimann, D., Schaefke, H., Matlok, S., Koerger, H., & Eskofier, B. (2018). Assessment of Perceptual-Cognitive Abilities among Athletes in Virtual Environments: Exploring Interaction Concepts for Soccer Players. In ACM New York, NY, USA ©2018 (Eds.), Proceedings of the 2018 Designing Interactive Systems Conference (pp. 1013-1024). Hong Kong, HK: New York.
Moceri, S., Canneva, F., Habermeyer, J., Dobner, J., Schulze-Krebs, A., Puchades, M.,... von Hörsten, S. (2018, March). Association of early phenotypic behavioral alterations in human alpha-synuclein overexpressing transgenic rats with alpha-synuclein/huntingtin/amyloid-beta protein cross-seeding. Poster presentation at Advances in Alzheimer's and Parkinson's Therapies an AAT-AD/PD Focus Meeting, Torino, IT.
Stoffel Antunes, R., Adams Seewald, L., Facco Rodrigues, V., Andre da Costa, C., da Silveira Junior, L.G., da Rosa Righi, R.,... Campanatti, G. (2018). A Survey of Sensors in Healthcare Workflow Monitoring. ACM Computing Surveys, 51(2). https://dx.doi.org/10.1145/3177852
Schellenberger, S., Shi, K., Mai, M., Wiedemann, J.P., Steigleder, T., Eskofier, B.,... Kölpin, A. (2018). Detecting Respiratory Effort-Related Arousals in Polysomnographic Data Using LSTM Networks. (Unpublished, Accepted).
Timotius, I., Canneva, F., Minakaki, G., Pasluosta, C.F., Moceri, S., Casadei, N.,... Eskofier, B. (2018). Dynamic footprint based locomotion sway assessment in α-synucleinopathic mice using Fast Fourier Transform and Low Pass Filter. Journal of Neuroscience Methods, 296, 1-11. https://dx.doi.org/10.1016/j.jneumeth.2017.12.004
Timotius, I., Canneva, F., Minakaki, G., Pasluosta, C.F., Moceri, S., Casadei, N.,... Eskofier, B. (2018). Dynamic footprints of α-synucleinopathic mice recorded by CatWalk gait analysis. Data in Brief, 17, 189-193. https://dx.doi.org/10.1016/j.dib.2017.12.067
Ivanovic, M., Ring, M., Baronio, F., Calza, S., Vukcevic, V., Hadzievski, L.,... Eskofier, B. (2018). ECG derived feature combination versus single feature in predicting defibrillation success in out-of-hospital cardiac arrested patients. Biomedical Physics and Engineering Express, 5(1), 015012. https://dx.doi.org/10.1088/2057-1976/aaebec
Ullrich, M., Gladow, T., Roth, N., Küderle, A., Ollenschläger, M., Gaßner, H.,... Eskofier, B. (2018, July). FallRiskPD: Long-term fall risk classification for Parkinson’s disease via intelligent sensor-based gait analysis in the home environment (Talk). Paper presentation at European Falls Festival 2018, Manchester, GB.
Steib, S., Klamroth, S., Gaßner, H., Pasluosta, C.F., Eskofier, B., Winkler, J.,... Pfeifer, K. (2018). Gait adaptations to treadmill training in Parkinson’s patients: effects of perturbation, sustainability, and moderators. In Murphy, M., Boreham, C., De Vito, G., Tsolakidis, E. (Eds.), Book of Abstracts (pp. 335).
Zrenner, M., Ullrich, M., Zobel, P., Jensen, U., Laser, F., Groh, B.,... Eskofier, B. (2018). Kinematic parameter evaluation for the purpose of a wearable running shoe recommendation. In IEEE (Eds.), Proceedings of the 15th IEEE International Conference on Wearable and Implantable Body Sensor Networks (BSN) (pp. 106-109). Las Vegas, US.

Last updated on 2016-01-06 at 16:36