Dr.-Ing. Matthias Markl



Organisation


Department Werkstoffwissenschaften
Lehrstuhl für Werkstoffwissenschaften (Werkstoffkunde und Technologie der Metalle)



Project lead


Fundamental mechanisms and modeling of microstructure evolution during beam and powder bed-based additive manufacturing
Dr.-Ing. Matthias Markl
(06/06/2017 - 05/06/2020)

(Ein neue Generation einkristalliner Superlegierungen: Vom Atom zur Turbinenschaufel – Festigkeitssteigernde Elementarprozesse, verfahrenstechnische Grundlagen u. skalenübergreifende Modellierung):
SFB/TRR 103 (C07): Multi-criteria calculation of optimum compositions for single crystal superalloys
Prof. Dr.-Ing. Carolin Körner; Dr.-Ing. Matthias Markl
(01/01/2016 - 31/12/2019)


Publications (Download BibTeX)

Go to first page Go to previous page 2 of 3 Go to next page Go to last page

Markl, M., Lodes, M., Franke, M., & Körner, C. (2017). Additive Fertigung durch selektives Elektronenstrahlschmelzen. Schweissen und Schneiden, 69, 30-39.
Markl, M., Lodes, M., Franke, M., & Körner, C. (2017). Additive manufacturing using selective electron beam melting. Welding and Cutting, 16(3), 177-184.
Rausch, A., Küng, V., Pobel, C., Markl, M., & Körner, C. (2017). Predictive Simulation of Process Windows for Powder Bed Fusion Additive Manufacturing: Influence of the Powder Bulk Density. Materials, 10(10). https://dx.doi.org/10.3390/ma10101117
Köpf, J., Rai, A., Markl, M., & Körner, C. (2016). 3D Grain Structure Simulation for Beam-Based Additive Manufacturing. In Proceedings of the 6th International Conference on Additive Technologies iCAT 2016 (pp. 215-221). Nürnberg, DE.
Rai, A., Markl, M., & Körner, C. (2016). A coupled Cellular Automaton–Lattice Boltzmann model for grain structure simulation during additive manufacturing. Computational Materials Science, 124, 37-48. https://dx.doi.org/10.1016/j.commatsci.2016.07.005
Bauer, M., Schornbaum, F., Godenschwager, C., Markl, M., Anderl, D., Köstler, H., & Rüde, U. (2016). A Python extension for the massively parallel multiphysics simulation framework waLBerla. International Journal of Parallel, Emergent and Distributed Systems, 31(6), 529-542. https://dx.doi.org/10.1080/17445760.2015.1118478
Markl, M., & Körner, C. (2016). Multiscale Modeling of Powder Bed-Based Additive Manufacturing. Annual Review of Materials Research, 46, 93-123. https://dx.doi.org/10.1146/annurev-matsci-070115-032158
Markl, M., Bauereiß, A., Rai, A., & Körner, C. (2016). Numerical Investigations of Selective Electron Beam Melting on the Powder Scale. In Proceedings of the Fraunhofer Direct Digital Manufacturing Conference 2016. Berlin: Fraunhofer Verlag.
Bauer, M., Schornbaum, F., Godenschwager, C., Markl, M., Anderl, D., Rüde, U., & Köstler, H. (2015). A Python extension for the massively parallel multiphysics simulation framework waLBerla. International Journal of Distributed and Parallel Systems , 1-14. https://dx.doi.org/10.1080/17445760.2015.1118478
Markl, M., & Körner, C. (2015). Free surface Neumann boundary condition for the advection-diffusion lattice Boltzmann method. Journal of Computational Physics, 301, 230-246. https://dx.doi.org/10.1016/j.jcp.2015.08.033

Last updated on 2016-26-05 at 04:48