Prof. Dr.-Ing. Sigrid Leyendecker



Organisationseinheit


Lehrstuhl für Technische Dynamik


Preise / Auszeichnungen


2016 : SMASIS 2016 Best Student Paper



Projektleitung

Go to first page Go to previous page 1 von 2 Go to next page Go to last page

(Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik (FRASCAL)):
GRK2423 - P2: Teilprojekt P2 - Atomistics of Crack-Heterogeneity Interactions
Prof. Dr.-Ing. Erik Bitzek; Prof. Dr.-Ing. Sigrid Leyendecker
(02.01.2019 - 30.06.2023)

(Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik (FRASCAL)):
GRK2423 - P9: Teilprojekt P9 - Adaptive Dynamic Fracture Simulation
Prof. Dr.-Ing. Sigrid Leyendecker; Prof. Dr. Thorsten Pöschel
(02.01.2019 - 30.06.2023)

Etablierung eines Herzunterstützungssystems basierend auf einer dem Herzbeutel nachgebildeten kontraktilen Membran
(Establishment of a heart support system as a contractile membrane based on the pericardium)
Prof. Dr.-Ing. Sigrid Leyendecker
(01.05.2016 - 31.12.2018)

(SPP 1886: Polymorphe Unschärfemodellierungen für den numerischen Entwurf von Strukturen):
Dynamic analysis of prosthetic structures with polymorphic uncertainty
Prof. Dr.-Ing. Sigrid Leyendecker
(01.01.2016 - 31.12.2019)

MKS-Menschenmodelle: Optimalsteuerung biomechanischer MKS-Menschenmodelle für Simulationsanwendungen in der virtuellen Montageplanung
(Optimal control of biomechanical MBS-Digital Human Models for simulation in the virtual assembly planning)
Prof. Dr.-Ing. Sigrid Leyendecker
(01.11.2015 - 31.10.2018)


Mitarbeit in Forschungsprojekten


GRK 2423 FRASCAL: Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik (FRASCAL)
Prof. Dr.-Ing. Paul Steinmann
(01.01.2019 - 30.06.2023)

(Bionicum Forschung):
Entwicklung künstlicher Muskeln als Aktoren und Sensoren auf der Basis dielektrischer Elastomere
(Development of artificial muscles as actors and sensors on the basis of dielectric elastomers)
Prof. Dr.-Ing. Jörg Franke; Prof. Dr.-Ing. Sigrid Leyendecker
(01.10.2012 - 31.03.2018)


Publikationen (Download BibTeX)

Go to first page Go to previous page 21 von 22 Go to next page Go to last page

Leyendecker, S. (2006). Various mechanical integrators for constrained dynamical systems. Los Angeles, California, US.
Leyendecker, S., Betsch, P., & Steinmann, P. (2005). Conserving integration of constrained geometrically nonlinear beam dynamics. In Proceedings of the Sixth Conference on Structural Dynamics (pp. 2021-2026). Paris, France, FR.
Leyendecker, S., Betsch, P., & Steinmann, P. (2005). Mechanical integration of multibody dynamics by the discrete null space method. Kaiserslautern, DE.
Leyendecker, S., Betsch, P., & Steinmann, P. (2005). Mechanical integration of multibody dynamics by the discrete null space method. In Proceedings of the International Conference on Advances in Computational Multibody Dynamics (pp. cd). Madrid, Spain, ES.
Leyendecker, S., Betsch, P., & Steinmann, P. (2005). The discrete null space method for constrained mechanical systems in nonlinear structural and multibody dynamics. In PAMM, Vol. 5 (pp. 205-206). Luxembourg, LU.
Leyendecker, S., Betsch, P., & Steinmann, P. (2005). The discrete null space method for multibody dynamics - an application to closed loop systems. In Proceedings of the International Conference on Computational & Experimental Engineering and Sciences (pp. cd). Chennai, India, IN.
Leyendecker, S., Betsch, P., & Steinmann, P. (2005). The discrete null space method for multibody dynamics with application to closed loop systems. Bad Herrenalb, DE.
Steinmann, P., Betsch, P., & Leyendecker, S. (2004). Energy-conserving integration of constrained Hamiltonian systems – a comparison of approaches. Computational Mechanics, 33(3), 174-185. https://dx.doi.org/10.1007/s00466-003-0516-2
Leyendecker, S., Betsch, P., & Steinmann, P. (2004). Mechanical Integrators for Constrained Dynamics of Geometrically Exact Beams. In PAMM, Vol. 4 (pp. 344-345). Dresden, Germany, DE.
Leyendecker, S., Betsch, P., & Steinmann, P. (2004). Mechanical integrators for constrained Hamiltonian systems. Sterzing, IT.

Zuletzt aktualisiert 2017-07-07 um 10:15