PD Dr. Nicolas Neuß



Organisation


Lehrstuhl für Angewandte Mathematik (Wissenschaftliches Rechnen)
Lehrstuhl für Angewandte Mathematik (Modellierung und Numerik)



Project lead


SBCL-Vektor: Implementation of vector operations for SBCL
Marco Heisig; PD Dr. Nicolas Neuß
(10/07/2018 - 31/03/2019)

Buchgutscheine: Innovationsfonds 2017: Urkunden und Buchgutscheine für gute Leistungen in Anfängervorlesungen
PD Dr. Nicolas Neuß
(01/07/2017 - 30/09/2020)

Verteiltes Höchstleistungsrechnen in Common Lisp
Prof. Dr. Eberhard Bänsch; PD Dr. Nicolas Neuß
(01/10/2015 - 31/03/2016)

Implementation and optimization of stencil operations on staggered hierarchical meshes
Prof. Dr. Eberhard Bänsch; PD Dr. Nicolas Neuß
(01/06/2013 - 01/10/2014)


Other Research Activities


Organisation of a congress / conference
PD Dr. Nicolas Neuß
12th European Lisp Symposium 2019
(01/04/2019 - 02/04/2019)


Publications (Download BibTeX)

Go to first page Go to previous page 1 of 2 Go to next page Go to last page

Neuß, N. (2019). Mathematik für Anwender.
Neuß, N. (2018). Interactive flow simulation with Common Lisp. In EPITA (Eds.), Proceedings of the European Lisp Symposium 2018 (pp. 78-79). Marbella.
Himmelsbach, D., Neuss-Radu, M., & Neuß, N. (2018). Mathematical modelling and analysis of nanoparticle gradients induced by magnetic fields. Journal of Mathematical Analysis and Applications, 461(2), 1544-1560. https://dx.doi.org/10.1016/j.jmaa.2017.12.026
Neuß, N., & Heisig, M. (2017). Parallelizing Femlisp. In EPITA (Eds.), Proceedings of the ELS 2017 (pp. 54-55). Brussels.
Neuß, N., & Heisig, M. (2016). Distributed High Performance Computing in Common Lisp. In EPITA (Eds.), Proceedings of the ELS 2016 (pp. 101-102). Krakow.
Neuß, N. (2011). Using Common Lisp in University Course Administration. In EPITA (Eds.), https://european-lisp-symposium.org/2011/index.html#proceedings. TUHH Hamburg.
Neuß, N. (2007). High-accuracy approximation of effective coefficients. In Universität Heidelberg (Eds.), Abschlussbericht SFB 359. (pp. 567-577). Springer Berlin Heidelberg.
Neuß, N., Neuss-Radu, M., & Mikelic, A. (2006). Effective laws for the Poisson equation on domains with curved oscillating boundaries. Applicable Analysis, 479-502. https://dx.doi.org/10.1080/00036810500340476
Neuß, N., & Wieners, C. (2004). Criteria for the approximation property for multigrid methods in nonnested spaces. Mathematics of Computation, 73, 1583-1600. https://dx.doi.org/10.1090/S0025-5718-04-01628-X
Neuß, N. (2003). On using Common Lisp in scientific computing. In Proceedings of the CISC 2002. Springer-Verlag.

Last updated on 2019-14-04 at 10:30