Lehrstuhl für Katalytische Grenzflächenforschung

Egerlandstraße 3
91058 Erlangen

Publications (Download BibTeX)

Go to first page Go to previous page 1 of 4 Go to next page Go to last page

Waidhas, F., Jevric, M., Fromm, L., Bertram, M., Görling, A., Moth-Poulsen, K.,... Libuda, J. (2019). Electrochemically controlled energy storage in a norbornadiene-based solar fuel with 99% reversibility. Nano Energy, 63. https://dx.doi.org/10.1016/j.nanoen.2019.103872
Kettner, M., Duchoň, T., Wolf, M.J., Kullgren, J., Senanayake, S.D., Hermansson, K.,... Nehasil, V. (2019). Anion-mediated electronic effects in reducible oxides: Tuning the valence band of ceria via fluorine doping. Journal of Chemical Physics, 151(4). https://dx.doi.org/10.1063/1.5109955
Schuschke, C., Hohner, C., Jevric, M., Petersen, A.U., Wang, Z., Schwarz, M.,... Libuda, J. (2019). Solar energy storage at an atomically defined organic-oxide hybrid interface. Nature Communications, 10. https://dx.doi.org/10.1038/s41467-019-10263-4
Brummel, O., Lykhach, Y., Vorokhta, M., Smid, B., Stumm, C., Faisal, F.,... Libuda, J. (2019). Redox Behavior of Pt/Co3O4(111) Model Electrocatalyst Studied by X-ray Photoelectron Spectroscopy Coupled with an Electrochemical Cell. Journal of Physical Chemistry C, 123(14), 8746-8758. https://dx.doi.org/10.1021/acs.jpcc.8b08890
Kettner, M., Stumm, C., Schwarz, M., Schuschke, C., & Libuda, J. (2019). Pd model catalysts on clean and modified HOPG: Growth, adsorption properties, and stability. Surface Science, 679, 64-73. https://dx.doi.org/10.1016/j.susc.2018.08.022
Auer, F., Blaumeiser, D., Bauer, T., Bösmann, A., Szesni, N., Libuda, J., & Wasserscheid, P. (2019). Boosting the activity of hydrogen release from liquid organic hydrogen carrier systems by sulfur-additives to Pt on alumina catalysts. Catalysis: Science and Technology, 9(13), 3537-3547. https://dx.doi.org/10.1039/c9cy00817a
Bauer, T., Agel, F., Blaumeiser, D., Maisel, S., Görling, A., Wasserscheid, P., & Libuda, J. (2019). Low-Temperature Synthesis of Oxides in Ionic Liquids: Ozone-Mediated Formation of Co3O4 Nanoparticles Monitored by In Situ Infrared Spectroscopy. Advanced Materials Interfaces. https://dx.doi.org/10.1002/admi.201900890
Kettner, M., Maisel, S., Stumm, C., Schwarz, M., Schuschke, C., Görling, A., & Libuda, J. (2019). Pd-Ga model SCALMS: Characterization and stability of Pd single atom sites. Journal of Catalysis, 369, 33-46. https://dx.doi.org/10.1016/j.jcat.2018.10.027
Libuda, J. (2018). Model studies in energy-related catalysis and electrocatalysis. AMER CHEMICAL SOC.
Schauermann, S., Brandt, B., Fischer, J.-H., Ludwig, W., Libuda, J., Zaera, F., & Freund, H.-J. (2008). COLL 215-Role of carbonaceous deposits in olefin conversions with hydrogen: cis-2-butene Isomerization vs. hydrogenation on the Pd/Fe3O4 model catalyst. AMER CHEMICAL SOC.
Libuda, J. (2007). Formation and catalytic activity of partially oxidized Pd nanoparticles. (pp. 387-391). SPRINGER/PLENUM PUBLISHERS.
Libuda, J. (2007). Oxidation, reduction, and reactivity of supported Pd nanoparticles: Mechanism and microkinetics. Journal of Physical Chemistry C, 111(2), 938-949. https://dx.doi.org/10.1021/jp0658086
Libuda, J. (2007). Particle size dependent adsorption and reaction kinetics on reduced and partially oxidized Pd nanoparticles. Physical Chemistry Chemical Physics, 9(11), 1347-1361. https://dx.doi.org/10.1039/b614546a
Libuda, J. (2007). Adsorption and reaction of methanol on supported palladium catalysts: microscopic-level studies from ultrahigh vacuum to ambient pressure conditions. Physical Chemistry Chemical Physics, 9(27), 3541-3558. https://dx.doi.org/10.1039/b700365j
Libuda, J. (2006). Model studies in heterogeneous catalysis at the microscopic level: from the structure and composition of surfaces to reaction kinetics. (pp. 9-20). SPRINGER WIEN.
Libuda, J. (2006). CO oxidation on partially oxidized Pd nanoparticles. Journal of Catalysis, 242(1), 58-70. https://dx.doi.org/10.1016/j.jcat.2006.05.021
Libuda, J. (2005). Transient and steady state CO oxidation kinetics on nanolithographically prepared supported Pd model catalysts: Experiments and simulations. Journal of Chemical Physics, 123(5). https://dx.doi.org/10.1063/1.1949167
Libuda, J. (2005). CO adsorption and thermal stability of Pd deposited on a thin FeO(111) film. Surface Science, 586(1-3), 174-182. https://dx.doi.org/10.1016/j.susc.2005.05.011
Libuda, J. (2005). A molecular beam study of the NO plus CO reaction on Pd(111) surfaces. Journal of Physical Chemistry B, 109(27), 13272-13282. https://dx.doi.org/10.1021/jp050478v
Libuda, J. (2004). On the role of different adsorption and reaction sites on supported nanoparticles during a catalytic reaction: NO decomposition on a Pd/alumina model catalyst. Journal of Physical Chemistry B, 108(38), 14244-14254. https://dx.doi.org/10.1021/jp031371f

Last updated on 2019-24-04 at 10:16