Lehrstuhl für Chemische Reaktionstechnik

Address:
Egerlandstraße 3
91058 Erlangen



Subordinate Organisational Units

Professur für Katalytische Materialien
Professur für Katalytische Reaktoren und Prozesstechnik
Professur für Technische Chemie (Reaktionstechnik)


Related Project(s)


(Energie Campus 2 (EnCN 2) - Speicher, Projektteil B - Speicher mit Marktreife bis 2022):
EnCN 2 - Wasserstoffspeicherung
Prof. Dr. Peter Wasserscheid
(01/01/2017 - 31/12/2021)


(SPP 1708: Material Synthesis near Room Temperature):
Synthesis of novel MOF materials from structured and functionalized ionic liquid media
Prof. Dr. Martin Hartmann; Dr. Peter Schulz
(01/05/2014)



Publications (Download BibTeX)

Go to first page Go to previous page 1 of 24 Go to next page Go to last page

Bryzhin, A.A., Gantman, M., Buryak, A.K., & Tarkhanova, I.G. (2019). Brønsted acidic SILP-based catalysts with H3PMo12O40 or H3PW12O40 in the oxidative desulfurization of fuels. Applied Catalysis B-Environmental, 257. https://dx.doi.org/10.1016/j.apcatb.2019.117938
Kaiser, M., & Freund, H. (2019). A multimodular pseudoheterogeneous model framework for optimal design of catalytic reactors exemplified by methanol synthesis. Chemical Engineering Science, 206, 401-423. https://dx.doi.org/10.1016/j.ces.2019.04.036
Ganzer, G., Daniel, A., & Freund, H. (2019). Detailed geometrical analysis of statistical activity variations in diluted catalyst beds. Chemical Engineering Research & Design, 148, 102-118. https://dx.doi.org/10.1016/j.cherd.2019.05.056
Simon, A., Richter, H., Reif, B., Schülein, C.M., Sanwald, D., & Schwieger, W. (2019). Evaluation of a method for micro-defect sealing in ZSM-5 zeolite membranes by chemical vapor deposition of carbon. Separation and Purification Technology, 219, 180-185. https://dx.doi.org/10.1016/j.seppur.2019.03.017
Modvig, A., Kumpidet, C., Riisager, A., & Albert, J. (2019). Ru-Doped Wells–Dawson Polyoxometalate as Efficient Catalyst for Glycerol Hydrogenolysis to Propanediols. Materials, 12, 2175. https://dx.doi.org/10.3390/ma12132175
Sintra, T.E., Gantman, M., Ventura, S.P., Coutinho, J.A., Wasserscheid, P., & Schulz, P. (2019). Synthesis and characterization of chiral ionic liquids based on quinine, L-proline and L-valine for enantiomeric recognition. Journal of Molecular Liquids, 283, 410-416. https://dx.doi.org/10.1016/j.molliq.2019.03.084
Wolf, M., Gibson, E.K., Olivier, E.J., Neethling, J.H., Catlow, C.R.A., Fischer, N., & Claeys, M. (2019). Water-Induced Formation of Cobalt-Support Compounds under Simulated High Conversion Fischer-Tropsch Environment. ACS Catalysis, 9(6), 4902-4918. https://dx.doi.org/10.1021/acscatal.9b00160
Voß, D., Pickel, H., & Albert, J. (2019). Improving the fractionated catalytic oxidation of lignocellulosic biomass to formic acid and cellulose by using design of experiments. ACS Sustainable Chemistry & Engineering, 7(11), 9754-9762. https://dx.doi.org/10.1021/acssuschemeng.8b05095
Fedorova, N., Aziziyanesfahani, P., Jovicic, V., Zbogar-Rasic, A., Khan, M.J., & Delgado, A. (2019). Investigation of the Concepts to Increase the Dew Point Temperature for Thermal Energy Recovery from Flue Gas, Using Aspen®. Energies, 12. https://dx.doi.org/10.3390/en12091585
Modisha, P.M., Ouma, C.N., Garidzirai, R., Wasserscheid, P., & Bessarabov, D. (2019). The Prospect of Hydrogen Storage Using Liquid Organic Hydrogen Carriers. Energy & Fuels, 33(4), 2778-2796. https://dx.doi.org/10.1021/acs.energyfuels.9b00296
Bauer, T., Maisel, S., Blaumeiser, D., Vecchietti, J., Taccardi, N., Wasserscheid, P.,... Libuda, J. (2019). Operando DRIFTS and DFT Study of Propane Dehydrogenation over Solid- and Liquid-Supported GaxPty Catalysts. ACS Catalysis, 9(4), 2842-2853. https://dx.doi.org/10.1021/acscatal.8b04578
Seidl, P., Loekman, S., Sardogan, M., Voigt, E., Claßen, T., Ha, J.,... Delgado, A. (2019). Food technological potentials of CO2 gas hydrate technology for the concentration of selected juices. High Pressure Research. https://dx.doi.org/10.1080/08957959.2019.1597077
Tarkhanova, I.G., Bryzhin, A.A., Gantman, M., Yarovaya, T.P., Lukiyanchuk, I., Nedozorov, P.M., & Rudnev, V.S. (2019). Ce-, Zr-containing oxide layers formed by plasma electrolytic oxidation on titanium as catalysts for oxidative desulfurization. Surface & Coatings Technology, 362, 132-140. https://dx.doi.org/10.1016/j.surfcoat.2019.01.101
Marinkovic, J.M., Riisager, A., Franke, R., Wasserscheid, P., & Haumann, M. (2019). Fifteen Years of Supported Ionic Liquid Phase-Catalyzed Hydroformylation: Material and Process Developments. Industrial & Engineering Chemistry Research, 58(7), 2409-2420. https://dx.doi.org/10.1021/acs.iecr.8b04010
Jorschick, H., Bulgarin, A., Alletsee, L., Preuster, P., Bösmann, A., & Wasserscheid, P. (2019). Charging a Liquid Organic Hydrogen Carrier with Wet Hydrogen from Electrolysis. ACS Sustainable Chemistry & Engineering, 7(4), 4186-4194. https://dx.doi.org/10.1021/acssuschemeng.8b05778
Sogaard, A., Scheuermeyer, M., Bösmann, A., Wasserscheid, P., & Riisager, A. (2019). Homogeneously-catalysed hydrogen release/storage using the 2-methylindole/2-methylindoline LOHC system in molten salt-organic biphasic reaction systems. Chemical Communications, 55(14), 2046-2049. https://dx.doi.org/10.1039/c8cc09883b
Ariyanto, T., Gläsel, J.-S., Kern, A., Zhang, G., & Etzold, B. (2019). Improving control of carbide-derived carbon microstructure by immobilization of a transition-metal catalyst within the shell of carbide/carbon core shell structures. Beilstein Journal of Nanotechnology, 10, 419-427. https://dx.doi.org/10.3762/bjnano.10.41
Bhuin, R.G., Schreiber, P., Heller, B., Scheuermeyer, M., Wasserscheid, P., Steinrück, H.-P., & Maier, F. (2019). Surface behavior of low-temperature molten salt mixtures during the transition from liquid to solid. Journal of Molecular Liquids, 275, 290-296. https://dx.doi.org/10.1016/j.molliq.2018.11.056
Schueth, F., & Wasserscheid, P. (2019). Wilhelm Keim (1934-2018). Angewandte Chemie International Edition, 58(1), 31-32. https://dx.doi.org/10.1002/anie.201812688
Albert, J., Mendt, M., Mozer, M., & Voß, D. (2019). Explaining the role of vanadium in homogeneous glucose transformation reactions using NMR and EPR spectroscopy. Applied Catalysis A-General, 570, 262-270. https://dx.doi.org/10.1016/j.apcata.2018.10.030

Last updated on 2019-24-04 at 10:25