Lehrstuhl für Multiscale Simulation of Particulate Systems

Adresse:
Nägelsbachstraße 49
91052 Erlangen



Untergeordnete Organisationseinheiten

Juniorprofessur für Modellierung von Selbstorganisationsprozessen


Forschungsprojekt(e)


(Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik (FRASCAL)):
GRK2423 - P4: Teilprojekt P4 - Fragmentation in Large Scale DEM Simulations
Prof. Dr. Thorsten Pöschel; Prof. Dr. Michael Zaiser
(02.01.2019 - 30.06.2023)


(Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik (FRASCAL)):
GRK2423 - P9: Teilprojekt P9 - Adaptive Dynamic Fracture Simulation
Prof. Dr.-Ing. Sigrid Leyendecker; Prof. Dr. Thorsten Pöschel
(02.01.2019 - 30.06.2023)



Publikationen (Download BibTeX)

Go to first page Go to previous page 2 von 18 Go to next page Go to last page

Verbücheln, F., Ribeiro Parteli, E.J., & Pöschel, T. (2017). Homogenization of granular pipe flow by means of helical inner-wall texture. EPJ Web of Conferences, 140. https://dx.doi.org/10.1051/epjconf/201714003069
Nair, P., & Pöschel, T. (2017). Structural changes in wet granular matter due to drainage. EPJ Web of Conferences, 140. https://dx.doi.org/10.1051/epjconf/201714009005
Ribeiro Parteli, E.J., & Pöschel, T. (2017). Particle-based simulations of powder coating in additive manufacturing suggest increase in powder bed roughness with coating speed. EPJ Web of Conferences, 140. https://dx.doi.org/10.1051/epjconf/201714015013
Fan, F., Ribeiro Parteli, E.J., & Pöschel, T. (2017). Origin of Granular Capillarity Revealed by Particle-Based Simulations. Physical Review Letters, 118(21). https://dx.doi.org/10.1103/PhysRevLett.118.218001
Scholz, C., & Pöschel, T. (2017). Velocity distribution of a homogeneously driven two-dimensional granular gas. Physical Review Letters, 118(19). https://dx.doi.org/10.1103/PhysRevLett.118.198003
Almazán Torres, L., Serero, D., Salueña, C., & Pöschel, T. (2017). Energy decay in a granular gas collapse. New Journal of Physics, 19. https://dx.doi.org/10.1088/1367-2630/aa5598
Amon, A., Born, P., Daniels, K., Dijksman, J., Huang, K., Parker, D.,... Wierschem, A. (2017). Focus on imaging methods in granular physics. Review of Scientific Instruments, 88(051701). https://dx.doi.org/10.1063/1.4983052
Gong, J., Newman, R.S., Engel, M., Zhao, M., Bian, F., Glotzer, S.C., & Tang, Z. (2017). Shape-dependent ordering of gold nanocrystals into large-scale superlattices. Nature Communications, 8. https://dx.doi.org/10.1038/ncomms14038
Nair, P., & Pöschel, T. (2017). Dynamic capillary phenomena using Incompressible SPH. Chemical Engineering Science, 176, 192-204. https://dx.doi.org/10.1016/j.ces.2017.10.042
Damasceno, P.F., Glotzer, S.C., & Engel, M. (2017). Non-close-packed three-dimensional quasicrystals. Journal of Physics: Condensed Matter, 29(23). https://dx.doi.org/10.1088/1361-648X/aa6cc1
Ye, X., Chen, J., Irrgang, M.E., Engel, M., Dong, A., Glotzer, S.C., & Murray, C.B. (2017). Quasicrystalline nanocrystal superlattice with partial matching rules. Nature Materials, 16(2), 214-219. https://dx.doi.org/10.1038/nmat4759
Lin, H., Lee, S., Sun, L., Spellings, M., Engel, M., Glotzer, S.C., & Mirkin, C.A. (2017). Clathrate colloidal crystals. Science, 355(6328), 931-935. https://dx.doi.org/10.1126/science.aal3919
Sack, A., & Pöschel, T. (2017). Weight of an Hourglass – Theory and Experiment in Quantitative Comparison. American Journal of Physics, 85(2). https://dx.doi.org/10.1119/1.4973527
Daniels, K.E., Kollmer, J., & Puckett, J.G. (2017). Photoelastic force measurements in granular materials. Review of Scientific Instruments, 88(5). https://dx.doi.org/10.1063/1.4983049
Lee, K.-W., & Pöschel, T. (2017). Electroconvection of Pure Nematic Liquid Crystals without Free Charge Carriers. Soft Matter, 120, 8816-8823. https://dx.doi.org/10.1039/C7SM02055D
Froufe-Perez, L.S., Engel, M., Jose Saenz, J., & Scheffold, F. (2017). Band gap formation and Anderson localization in disordered photonic materials with structural correlations. Proceedings of the National Academy of Sciences, 114(36), 9570-9574. https://dx.doi.org/10.1073/pnas.1705130114
Weis, S., & Schröter, M. (2017). Analyzing X-ray tomographies of granular packings. Review of Scientific Instruments, 88(5). https://dx.doi.org/10.1063/1.4983051
Lee, K.-W., & Pöschel, T. (2017). Field-driven pattern formation in nematic liquid crystals: mesoscopic simulations of electroconvection. RSC Advances, 7(67). https://dx.doi.org/10.1039/C7RA06757G
Field, R.J., Gallas, J., & Schuldberg, D. (2017). Periodic and chaotic psychological stress variations as predicted by a social support buffered response model. Communications in Nonlinear Science and Numerical Simulation, 49, 135-144. https://dx.doi.org/10.1016/j.cnsns.2017.01.032
Aburumman, N., Müller, P., Nair, P., & Pöschel, T. (2017). Coupled Simulation of Deformable Bodies and ISPH Fluids for Secondary Bone Healing. Eurographics technical report series.


Zusätzliche Publikationen (Download BibTeX)


Michelsen, B. (2012). Validation of Dune Simulations using OpenFOAM (Bachelor thesis).
Bauereiß, A., Ribeiro Parteli, E.J., Riedlbauer, D.-R., & Stingl, M. (2012). Numerische Simulation pulver- und strahlbasierter additiver Fertigungsprozesse. In Dietmar Drummer (Eds.), (pp. 117 - 130).

Zuletzt aktualisiert 2019-24-04 um 10:16