Lehrstuhl für Informatik 8 (Theoretische Informatik)


Beschreibung:

Der Lehrstuhl Informatik 8 repräsentiert Themen aus dem Bereich Logik in der Informatik in Lehre und Forschung. Forschungsschwerpunkte sind im einzelnen

  • Logikbasierte Wissensrepräsentation
  • Softwarespezifikation und -verifikation
  • Modallogik in der Informatik, insbesondere koalgebraische Logik
  • Programmlogiken und Semantik von Programmiersprachen, insbesondere monadische Programmierung und Semantik von Iteration und Rekursion
  • Koalgebraische Semantik nebenläufiger Systeme
Adresse:
Martensstraße 3
91058 Erlangen


Forschungsprojekt(e)

Go to first page Go to previous page 1 von 3 Go to next page Go to last page

Koinduktion und Algebra in der Axiomatisierung und Algorithmik von Systemäquivalenzen
apl. Prof. Dr. Stefan Milius; Prof. Dr. Lutz Schröder
(01.02.2019 - 31.01.2022)


Rekonstruktion von Argumenten aus Noisy Text
Prof. Dr. Lutz Schröder
(01.06.2018 - 31.05.2021)


DAAD Reisekostenbeihilfe - Eingeladener Vortrag auf dem Workshop “{Symmetry, Logic, Computation}” des Simons Institutes in Berkeley CA, USA
apl. Prof. Dr. Stefan Milius
(07.11.2016 - 10.11.2016)


(Open Digital Research Environment Toolkit for the Advancement of Mathematics):
OpenDreamKit: Open Digital Research Environment Toolkit for the Advancement of Mathematics
Michael Kohlhase
(01.09.2015 - 31.08.2019)


Fortschritte in Koalgebraischer Automatentheorie
apl. Prof. Dr. Stefan Milius
(01.01.2015 - 31.12.2015)



Publikationen (Download BibTeX)

Go to first page Go to previous page 1 von 7 Go to next page Go to last page

Enqvist, S., Seifan, F., & Venema, Y. (2019). Completeness for mu-calculi: A coalgebraic approach. Annals of Pure and Applied Logic, 170(5), 578-641. https://dx.doi.org/10.1016/j.apal.2018.12.004
Adamek, J., & Milius, S. (2019). On functors preserving coproducts and algebras with iterativity. Theoretical Computer Science, 763, 66-87. https://dx.doi.org/10.1016/j.tcs.2019.01.018
Adámek, J., Milius, S., Myers, R., & Urbat, H. (2019). Generalized Eilenberg Theorem: Varieties of Languages in a Category. ACM Transactions on Computational Logic, 20(1), 3:1--3:47. https://dx.doi.org/10.1145/3276771
Goncharov, S., Schröder, L., Rauch, C., & Jakob, J. (2018). Unguarded Recursion on Coinductive Resumptions. Logical Methods in Computer Science, 14(3). https://dx.doi.org/10.23638/LMCS-14(3:10)2018
Holliday, W., & Litak, T.M. (2018). One Modal Logic to Rule Them All? In Guram Bezhanishvili, Giovanna D'Agostino, George Metcalfe, Thomas Studer (Eds.), Advances in Modal Logic 2018 (pp. 367-386). Bern, CH: London, UK: College Publications.
Schröder, L., & Venema, Y. (2018). Completeness of Flat Coalgebraic Fixpoint Logics. ACM Transactions on Computational Logic, 19(1). https://dx.doi.org/10.1145/3157055
Litak, T.M., & Visser, A. (2018). Lewis meets Brouwer: Constructive strict implication. Indagationes Mathematicae-New Series, 29(1), 36-90. https://dx.doi.org/10.1016/j.indag.2017.10.003
Wild, P., Schröder, L., Pattinson, D., & König, B. (2018). A van Benthem theorem for fuzzy modal logic. In 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018 (pp. 909-918). IEEE.
Goncharov, S., & Neves, R. (2018). A Semantics for Hybrid Iteration. In Proceedings of the 29th International Conference on Concurrency Theory, CONCUR 2018. Beijing, China.
Goncharov, S., Rauch, C., & Schröder, L. (2018). A Metalanguage for Guarded Iteration. In Bernd Fischer Tarmo Uustalu (Eds.), Theoretical Aspects of Computing - ICTAC 2018 (LNCS 11187) (pp. 191--210). Stellenbosch, South Africa: Springer International Publishing.
Adámek, J., Milius, S., & Moss, L. (2018). Fixed Points of Functors. Journal of Logical and Algebraic Methods in Programming, 95, 41--81.
Milius, S. (2018). Proper Functors and Fixed Points for Finite Behaviour. Logical Methods in Computer Science, 14(3), 32 pp..
Harsh, B., König, B., Küpper, S., Silva, A., & Wißmann, T. (2018). A coalgebraic treatment of conditional transition systems with upgrades. Logical Methods in Computer Science, Volume 14, Issue 1. https://dx.doi.org/10.23638/LMCS-14(1:19)2018
Hausmann, D., Schröder, L., & Deifel, H.-P. (2018). Permutation games for the weakly aconjunctive μ -calculus. In 24th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2018 (pp. 361-378). Springer.
Goncharov, S., & Schröder, L. (2018). Guarded Traced Categories. In Proceedings of the 21st International Conference on Foundations of Software Science and Computation Structures, FOSSACS 2018 Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2018 (pp. 313-330). Springer Verlag.
Litak, T.M., Pattinson, D., Sano, K., & Schröder, L. (2018). Model Theory and Proof Theory of Coalgebraic Predicate Logic. Logical Methods in Computer Science, 14(1). https://dx.doi.org/10.23638/LMCS-14(1:22)2018
Milius, S., Adámek, J., & Urbat, H. (2018). On Algebras with Effectful Iteration. In Corina Cîrstea (Eds.), Proc.~Coalgebraic Methods in Computer Science (CMCS'18). Thessaloniki: Heidelberg: Springer.
Dorsch, U., Milius, S., Schröder, L., & Wißmann, T. (2018). Predicate Liftings and Functor Presentations in Coalgebraic Expression Languages. In Corina Cîrstea (Eds.), Proc.~Coalgebraic Methods in Computer Science (CMCS'18). Thessaloniki: Springer.
Adámek, J., Milius, S., & Urbat, H. (2018). A Categorical Approach to Syntactic Monoids. Logical Methods in Computer Science, 14(2:9), 34 pp.. https://dx.doi.org/10.23638/LMCS-14(2:9)2018
Evert, S., Heinrich, P., Henselmann, K., Rabenstein, U., Scherr, E., & Schröder, L. (2017). Combining Machine Learning and Semantic Features in the Classification of Corporate Disclosures. In Loukanova R, Liefke K (Eds.), Proceedings of the Workshop on Logic and Algorithms in Computational Linguistics 2017 (LACompLing2017) (pp. 47 - 62). Stockholm, SE: Stockholm: Stockholm University.

Zuletzt aktualisiert 2018-18-06 um 15:53