Lehrstuhl für Informatik 8 (Theoretische Informatik)


Beschreibung:

Der Lehrstuhl Informatik 8 repräsentiert Themen aus dem Bereich Logik in der Informatik in Lehre und Forschung. Forschungsschwerpunkte sind im einzelnen

  • Logikbasierte Wissensrepräsentation
  • Softwarespezifikation und -verifikation
  • Modallogik in der Informatik, insbesondere koalgebraische Logik
  • Programmlogiken und Semantik von Programmiersprachen, insbesondere monadische Programmierung und Semantik von Iteration und Rekursion
  • Koalgebraische Semantik nebenläufiger Systeme
Adresse:
Martensstraße 3
91058 Erlangen


Forschungsprojekt(e)

Go to first page Go to previous page 1 von 3 Go to next page Go to last page

Koinduktion und Algebra in der Axiomatisierung und Algorithmik von Systemäquivalenzen
apl. Prof. Dr. Stefan Milius
(01.06.2019 - 31.05.2022)


Koinduktion und Algebra in der Axiomatisierung und Algorithmik von Systemäquivalenzen
apl. Prof. Dr. Stefan Milius; Prof. Dr. Lutz Schröder
(01.02.2019 - 31.01.2022)


Rekonstruktion von Argumenten aus Noisy Text
Prof. Dr. Lutz Schröder
(01.06.2018 - 31.05.2021)


BottlePost- ein sicheres, providerloses zu 100% dezentralisiertes peer-to-peer Emailsystem, welches die Privatsphäre auf innovative und benutzerfreundliche Art und Weise, durch automatische Verwendung von "State-of-the-Art" Verschlüsselungstechnologie und Dezentralisierung schützt.
Prof. Dr. Lutz Schröder
(01.10.2017 - 30.09.2018)


DAAD Reisekostenbeihilfe - Eingeladener Vortrag auf dem Workshop “{Symmetry, Logic, Computation}” des Simons Institutes in Berkeley CA, USA
apl. Prof. Dr. Stefan Milius
(07.11.2016 - 10.11.2016)



Publikationen (Download BibTeX)

Go to first page Go to previous page 1 von 7 Go to next page Go to last page

Holliday, W.H., & Litak, T.M. (2019). COMPLETE ADDITIVITY AND MODAL INCOMPLETENESS. Review of Symbolic Logic, 12(3), 487-535. https://dx.doi.org/10.1017/S1755020317000259
Hausmann, D., & Schröder, L. (2019). Game-based local model checking for the coalgebraic µ-calculus. In Wan Fokkink, Rob van Glabbeek (Eds.), Leibniz International Proceedings in Informatics, LIPIcs. Amsterdam, NL: Schloss Dagstuhl-Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing.
Dorsch, U., Milius, S., & Schröder, L. (2019). Graded monads and graded logics for the linear time – Branching time spectrum. In Wan Fokkink, Rob van Glabbeek (Eds.), Leibniz International Proceedings in Informatics, LIPIcs. Amsterdam, NL: Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing.
Urbat, H., & Milius, S. (2019). Varieties of data languages. In Ioannis Chatzigiannakis, Christel Baier, Stefano Leonardi, Paola Flocchini (Eds.), Leibniz International Proceedings in Informatics, LIPIcs. Patras, GR: Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing.
Enqvist, S., Seifan, F., & Venema, Y. (2019). Completeness for mu-calculi: A coalgebraic approach. Annals of Pure and Applied Logic, 170(5), 578-641. https://dx.doi.org/10.1016/j.apal.2018.12.004
Adamek, J., & Milius, S. (2019). On functors preserving coproducts and algebras with iterativity. Theoretical Computer Science, 763, 66-87. https://dx.doi.org/10.1016/j.tcs.2019.01.018
Evert, S., Heinrich, P., Henselmann, K., Rabenstein, U., Scherr, E., Schmitt, M., & Schröder, L. (2019). Combining Machine Learning and Semantic Features in the Classification of Corporate Disclosures. Journal of Logic, Language and Information. https://dx.doi.org/10.1007/s10849-019-09283-6
Goncharov, S., Schröder, L., Rauch, C., & Pirog, M. (2019). Guarded and Unguarded Iteration for Generalized Processes. Logical Methods in Computer Science, 15(3). https://dx.doi.org/10.23638/LMCS-15(3:1)2019
Milius, S., & Urbat, H. (2019). Equational Axiomatization of Algebras with Structure. In Mikolaj Bojanczyk, Alex Simpson (Eds.), Proceedings of the 22nd International Conference on Foundations of Software Science and Computation Structures (FoSSaCS 2019) (pp. 400-417). Springer Verlag.
Hausmann, D., & Schröder, L. (2019). Optimal Satisfiability Checking for Arithmetic µ-Calculi. In Mikolaj Bojanczyk, Alex Simpson (Eds.), Proceedings of the 22nd International Conference on Foundations of Software Science and Computation Structures, FoSSaCS 2019 (pp. 277-294). Springer Verlag.
Wißmann, T., Dubut, J., Katsumata, S.y., & Hasuo, I. (2019). Path Category for Free: Open Morphisms from Coalgebras with Non-deterministic Branching. In Mikolaj Bojanczyk, Alex Simpson (Eds.), Proceedings of the 22nd International Conference, FOSSACS 2019 (pp. 523-540). Springer Verlag.
Adámek, J., Milius, S., Myers, R., & Urbat, H. (2019). Generalized Eilenberg Theorem: Varieties of Languages in a Category. ACM Transactions on Computational Logic, 20(1), 3:1--3:47. https://dx.doi.org/10.1145/3276771
Goncharov, S., Schröder, L., Rauch, C., & Jakob, J. (2018). Unguarded Recursion on Coinductive Resumptions. Logical Methods in Computer Science, 14(3). https://dx.doi.org/10.23638/LMCS-14(3:10)2018
Holliday, W., & Litak, T.M. (2018). One Modal Logic to Rule Them All? In Guram Bezhanishvili, Giovanna D'Agostino, George Metcalfe, Thomas Studer (Eds.), Advances in Modal Logic 2018 (pp. 367-386). Bern, CH: London, UK: College Publications.
Litak, T.M., & Visser, A. (2018). Lewis meets Brouwer: Constructive strict implication. Indagationes Mathematicae-New Series, 29(1), 36-90. https://dx.doi.org/10.1016/j.indag.2017.10.003
Schröder, L., & Venema, Y. (2018). Completeness of Flat Coalgebraic Fixpoint Logics. ACM Transactions on Computational Logic, 19(1). https://dx.doi.org/10.1145/3157055
Hausmann, D., Schröder, L., & Deifel, H.-P. (2018). Permutation games for the weakly aconjunctive μ -calculus. In 24th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2018 (pp. 361-378). Springer.
Harsh, B., König, B., Küpper, S., Silva, A., & Wißmann, T. (2018). A coalgebraic treatment of conditional transition systems with upgrades. Logical Methods in Computer Science, Volume 14, Issue 1. https://dx.doi.org/10.23638/LMCS-14(1:19)2018
Litak, T.M., Pattinson, D., Sano, K., & Schröder, L. (2018). Model Theory and Proof Theory of Coalgebraic Predicate Logic. Logical Methods in Computer Science, 14(1). https://dx.doi.org/10.23638/LMCS-14(1:22)2018
Goncharov, S., Rauch, C., & Schröder, L. (2018). A Metalanguage for Guarded Iteration. In Bernd Fischer Tarmo Uustalu (Eds.), Theoretical Aspects of Computing - ICTAC 2018 (LNCS 11187) (pp. 191--210). Stellenbosch, South Africa: Springer International Publishing.

Zuletzt aktualisiert 2019-24-04 um 10:19