Lehrstuhl für Angewandte Mathematik

Adresse:
Cauerstraße 11
91058 Erlangen



Untergeordnete Organisationseinheiten

Professur für Angewandte Mathematik
Professur für Angewandte Mathematik
Professur für Angewandte Mathematik (Mathematische Modellierung)


Forschungsbereiche

Multicomponent reactive transport in natural porous media
Multiscale modeling, analysis and simulation of reaction-diffusion processes in porous media. Application to carbohydrat
Geophysical free surface flows
Multiphase flow in natural porous media
Emergence in natural porous media
Stochastic modeling of transport processes in porous media


Forschungsprojekt(e)

Go to first page Go to previous page 1 von 4 Go to next page Go to last page

(DFG Schwerpunktprogramm 2089 “Rhizosphere Spatiotemporal Organisation – a Key to Rhizosphere Functions”):
Mehrskalenmodellierung mit veränderlicher Mikrostruktur: Ein Ansatz
zur Emergenz in der Rhizosphäre mit effektiven Bodenfunktionen
Dr. Alexander Prechtel; Dr. Raphael Schulz
(01.02.2019 - 31.01.2022)


PPP Frankreich 2019 Phase I
Prof. Dr. Martin Burger
(01.01.2019 - 31.12.2020)


(Nonlocal Methods for Arbitrary Data Sources):
NoMADS: Nonlocal Methods for Arbitrary Data Sources
Prof. Dr. Martin Burger
(01.10.2018 - 28.02.2022)


SBCL-Vektor: Implementation von Vektoroperationen für SBCL
Marco Heisig; PD Dr. Nicolas Neuß
(10.07.2018 - 31.03.2019)


MED4D: "Verbundprojekt MED4D: Dynamische Medizinische Bildgebung: Modellierung und Analyse medizinischer Daten für verbesserte Diagnose, Überwachung und Arzneimittelentwicklung"
Prof. Dr. Martin Burger
(01.12.2016 - 30.11.2019)



Publikationen (Download BibTeX)

Go to first page Go to previous page 2 von 11 Go to next page Go to last page

Bungert, L., Ehrhardt, M.J., Coomes, D., Rasch, J., Reisenhofer, R., & Schönlieb, C.-B. (2018). Blind image fusion for hyperspectral imaging with the directional total variation. Inverse Problems, 34(4). https://dx.doi.org/10.1088/1361-6420/aaaf63
Neuß, N. (2018). Interactive flow simulation with Common Lisp. In EPITA (Eds.), Proceedings of the European Lisp Symposium 2018 (pp. 78-79). Marbella.
Burger, M. (2018). Pattern formation of a nonlocal, anisotropic interaction model. Mathematical Models & Methods in Applied Sciences, 28(3), 409-451. https://dx.doi.org/10.1142/S0218202518500112
Fried, M., Aizinger, V., & Bungert, L. (2018). Comparison of two local discontinuous Galerkin formulations for the subjective surfaces problem. Computing and Visualization in Science. https://dx.doi.org/10.1007/s00791-018-0291-4
Totsche, K.U., Amelung, W., Gerzabek, M.H., Guggenberger, G., Klumpp, E., Knief, C.,... Kögel-Knabner, I. (2018). Microaggregates in Soils. Journal of Plant Nutrition and Soil Science, 181(1), 104-136. https://dx.doi.org/10.1002/jpln.201600451
Frank, F., Liu, C., Alpak, F.O., & Rivière, B. (2018). A finite volume/discontinuous Galerkin method for the advective Cahn–Hilliard equation with degenerate mobility on porous domains stemming from micro-CT imaging. Computational Geosciences, 22(2), 543–563. https://dx.doi.org/10.1007/s10596-017-9709-1
Ray, N., Rupp, A., Schulz, R., & Knabner, P. (2018). Old and New Approaches Predicting the Diffusion in Porous Media. Transport in Porous Media, 124(3), 803-824. https://dx.doi.org/10.1007/s11242-018-1099-x
Brinkmann, E.M., Brinkmann, E.M., Burger, M., & Grah, J.S. (2018). Unified Models for Second-Order TV-Type Regularisation in Imaging: A New Perspective Based on Vector Operators. Journal of Mathematical Imaging and Vision. https://dx.doi.org/10.1007/s10851-018-0861-6
Burger, M. (2018). SORTING PHENOMENA IN A MATHEMATICAL MODEL FOR TWO MUTUALLY ATTRACTING/REPELLING SPECIES. SIAM Journal on Mathematical Analysis, 50(3), 3210-3250. https://dx.doi.org/10.1137/17M1125716
Marx, A., Conrad, M., Aizinger, V., Prechtel, A., van Geldern, R., & Barth, J. (2018). Groundwater data improve modelling of headwater stream CO2 outgassing with a stable DIC isotope approach. Biogeosciences, 15(10), 3093-3106. https://dx.doi.org/10.5194/bg-15-3093-2018
Burger, M. (2018). Modern regularization methods for inverse problems. Acta Numerica, 27, 1-111. https://dx.doi.org/10.1017/S0962492918000016
Burger, M. (2018). Joint reconstruction via coupled Bregman iterations with applications to PET-MR imaging. Inverse Problems, 34(1). https://dx.doi.org/10.1088/1361-6420/aa9425
Burger, M. (2018). Dynamic SPECT reconstruction with temporal edge correlation. Inverse Problems, 34(1). https://dx.doi.org/10.1088/1361-6420/aa9a94
Burger, M. (2018). A Variational Model for Joint Motion Estimation and Image Reconstruction. Siam Journal on Imaging Sciences, 11(1), 94-128. https://dx.doi.org/10.1137/16M1084183
Jaust, A., Reuter, B., Aizinger, V., Schütz, J., & Knabner, P. (2018). FESTUNG: A MATLAB/GNU Octave toolbox for the discontinuous Galerkin method. Part III: Hybridized discontinuous Galerkin (HDG) formulation. Computers & Mathematics With Applications, 75(12), 4505-4533. https://dx.doi.org/10.1016/j.camwa.2018.03.045
Hajduk, H., Hodges, B.R., Aizinger, V., & Reuter, B. (2018). Locally Filtered Transport for computational efficiency in multi-component advection-reaction models. ENVIRON MODELL SOFTW , 102, 185-198. https://dx.doi.org/10.1016/j.envsoft.2018.01.003
Himmelsbach, D., Neuss-Radu, M., & Neuß, N. (2018). Mathematical modelling and analysis of nanoparticle gradients induced by magnetic fields. Journal of Mathematical Analysis and Applications, 461(2), 1544-1560. https://dx.doi.org/10.1016/j.jmaa.2017.12.026
Knodel, M. (2018). Quantitative Analysis of Hepatitis C NS5A Viral Protein Dynamics on the ER Surface. Viruses-Basel, 10(1). https://dx.doi.org/10.3390/v10010028
Rupp, A., Knabner, P., & Dawson, C. (2018). A local discontinuous Galerkin scheme for Darcy flow with internal jumps. Computational Geosciences, 22(4), 1149-1159. https://dx.doi.org/10.1007/s10596-018-9743-7
Aizinger, V., Rupp, A., Schütz, J., & Knabner, P. (2018). Analysis of a mixed discontinuous Galerkin method for instationary Darcy flow. Computational Geosciences, 22(1), 179-194. https://dx.doi.org/10.1007/s10596-017-9682-8

Zuletzt aktualisiert 2018-31-08 um 23:50