Lehrstuhl für Angewandte Mathematik (Modellierung und Numerik)

Cauerstraße 11
91058 Erlangen

Untergeordnete Organisationseinheiten

Professur für Angewandte Mathematik
Professur für Angewandte Mathematik (Analysis und Numerik partieller Differentialgleichungen)
Professur für Angewandte Mathematik (Mathematische Modellierung)


Multicomponent reactive transport in natural porous media
Multiscale modeling, analysis and simulation of reaction-diffusion processes in porous media. Application to carbohydrat
Geophysical free surface flows
Multiphase flow in natural porous media
Emergence in natural porous media
Stochastic modeling of transport processes in porous media


Go to first page Go to previous page 3 von 4 Go to next page Go to last page

LifeInverse: Variational Methods for Dynamic Inverse Problems in the Life Sciences
Prof. Dr. Martin Burger
(01.03.2014 - 28.02.2019)

Implementierung und Optimierung von Stencil-Operationen auf gestaffelten hierarchischen Gittern
Prof. Dr. Eberhard Bänsch; PD Dr. Nicolas Neuß
(01.06.2013 - 01.10.2014)

MPFA (Multi Point Flux Approximation) und gemischt-hybride Finite Element Methoden für Fluss und Transport in porösen Medien
Prof. Dr. Peter Knabner
(01.01.2012 - 31.12.2013)

Entwicklung neuer photokatalytischer Filtersysteme zur Luftreinigung von Nanopartikeln, organischen Zusätzen und Bakterien mit Hilfe numerischer Simulationen
Prof. Dr. Peter Knabner
(01.10.2009 - 30.09.2011)

Efficient Numerical Methods for Large Partial Differential Complementarity Systems arising in Multispecies Reactive Transport with Minerals in Porous Media
Prof. Dr. Peter Knabner; PD Dr. Serge Kräutle
(01.01.2007 - 31.12.2011)

Publikationen (Download BibTeX)

Go to first page Go to previous page 11 von 14 Go to next page Go to last page

Pop, I.S., Radu, A.F., & Knabner, P. (2004). Mixed finite elements for the Richards' equation: Linearization procedure. Journal of Computational and Applied Mathematics, 168, 365-373. https://dx.doi.org/10.1016/j.cam.2003.04.008
Bause, M., & Knabner, P. (2004). Computation of variably saturated subsurface flow by adaptive mixed hybrid finite element methods. Advances in Water Resources, 27(6), 565-581. https://dx.doi.org/10.1016/j.advwatres.2004.03.005
Knabner, P., Bitterlich, S., Iza Teran, R., Prechtel, A., & Schneid, E. (2003). Influence of Surfactants on Spreading of Contaminants and Soil Remediation. In Willi Jäger, Hans-Joachim Krebs (Eds.), Mathematics - Key Technology for the Future. (pp. 152-161). Berlin, Heidelberg: Springer.
Borchers, W., Kräutle, S., Pasquetti, R., Peyret, R., & Rautmann, R. (2003). Multi-domain finite element - Spectral Chebyshev parallel Navier-Stokes solver for viscous flow problems. In Ernst Heinrich Hirschel (Eds.), Numerical Flow Simulation III (pp. 3-17). Berlin Heidelberg: Vieweg.
Knabner, P., Korotov, S., & Summ, G. (2003). Conditions for the invertibility of the isoparametric mapping for hexahedral finite elements. Finite Elements in Analysis and Design, 40(2), 159-172. https://dx.doi.org/10.1016/S0168-874X(02)00196-8
Bitterlich, S., & Knabner, P. (2003). Experimental design for outflow experiments based on a multi-level identification method for material laws. Inverse Problems, 19(5), 1011-1030. https://dx.doi.org/10.1088/0266-5611/19/5/302
Knabner, P., & Angermann, L. (2003). Numerical Methods for Elliptic and Parabolic Partial Differential Equations. New York: Springer.
Bause, M., & Knabner, P. (2002). Uniform error analysis for Lagrange-Galerkin approximations of convection-dominated problems. SIAM Journal on Numerical Analysis, 39(6), 1954-1984. https://dx.doi.org/10.1137/S0036142900367478
Bitterlich, S., & Knabner, P. (2002). An efficient method for solving an inverse problem for the Richards equation. Journal of Computational and Applied Mathematics, 147(1), 153-173. https://dx.doi.org/10.1016/S0377-0427(02)00430-2
Eck, C., & Knabner, P. (2002). Two-Scale Models for Liquid-Solid Phase Transitions in Binary Material with Equiaxed Microstructure. In Nenad Antonić, C. J. van Duijn, Willi Jäger, Andro Mikelić (Eds.), Multiscale Problems in Science and Technology. (pp. 175-187). Berlin, Heidelberg: Springer.
Neuss-Radu, M. (2002). The failure of uniform exponential decay for boundary layers. (pp. 243-250).
Knabner, P., & Schneid, E. (2002). Adaptive Hybrid Mixed Finite Element Discretization of Instationary Variably Saturated Flow in Porous Media. In Michael Breuer, Franz Durst, Christoph Zenger (Eds.), High Performance Scientific And Engineering Computing. (pp. 37-44). Berlin, Heidelberg: Springer.
Eck, C., & Knabner, P. (2002). A Two—Scale Method for Liquid—Solid Phase Transitions with Dendritic Microstructure. In Michael Breuer, Franz Durst, Christoph Zenger (Eds.), High Performance Scientific And Engineering Computing (pp. 237-244). Berlin, Heidelberg: Springer.
Prechtel, A., Knabner, P., Schneid, E., & Totsche, K.U. (2002). Simulation of carrier-facilitated transport of phenanthrene in a layered soil profile. Journal of Contaminant Hydrology, 56, 209-225. https://dx.doi.org/10.1016/S0169-7722(01)00211-X
Eck, C., Knabner, P., & Korotov, S. (2002). A two-scale method for the computation of solid-liquid phase transitions with dendritic microstructure. Journal of Computational Physics, 178(1), 58-80. https://dx.doi.org/10.1006/jcph.2002.7018
Radu, A.F., Bause, M., Knabner, P., Lee, G., & Friess, W. (2002). Modeling of Drug Release From Collagen Matrices. Journal of Pharmaceutical Sciences, 91(4), 964-972. https://dx.doi.org/10.1002/jps.10098
Bitterlich, S., & Knabner, P. (2002). Adaptive and formfree identification of nonlinearities in fluid flow from column experiments. In Zhangxin Chen, Richard E. Ewing (Eds.), Fluid flow and transport in porous media: mathematical and numerical treatment (pp. 63-74). American Mathematical Society.
Prechtel, A., & Knabner, P. (2002). Accurate and efficient simulation of coupled water flow and nonlinear reactive transport in the saturated and vadose zone-application to surfactant enhanced and intrinsic bioremediation. In S. Majid Hassanizadeh, Ruud J. Schotting, William G. Gray and George F. Pinder (Eds.), Computational Methods in Water Resources. (pp. 687-694).
Kräutle, S. (2001). A Navier-Stokes solver based on CGBI and the method of characteristics (Dissertation).
Knabner, P., Tapp, C., & Thiele, K. (2001). Adaptivity in the finite volume discretization of variable density flows in porous media. Physics and Chemistry of the Earth, Part B, 26(4), 319-324. https://dx.doi.org/10.1016/S1464-1909(01)00013-2

Zuletzt aktualisiert 2019-11-07 um 23:51