Lehrstuhl für Angewandte Mathematik

Adresse:
Cauerstraße 11
91058 Erlangen



Untergeordnete Organisationseinheiten

Professur für Angewandte Mathematik
Professur für Angewandte Mathematik
Professur für Angewandte Mathematik (Mathematische Modellierung)


Forschungsbereiche

Multicomponent reactive transport in natural porous media
Multiscale modeling, analysis and simulation of reaction-diffusion processes in porous media. Application to carbohydrat
Geophysical free surface flows
Multiphase flow in natural porous media
Emergence in natural porous media
Stochastic modeling of transport processes in porous media


Forschungsprojekt(e)

Go to first page Go to previous page 3 von 4 Go to next page Go to last page

LifeInverse: Variational Methods for Dynamic Inverse Problems in the Life Sciences
Prof. Dr. Martin Burger
(01.03.2014 - 28.02.2019)


Implementierung und Optimierung von Stencil-Operationen auf gestaffelten hierarchischen Gittern
Prof. Dr. Eberhard Bänsch; PD Dr. Nicolas Neuß
(01.06.2013 - 01.10.2014)


MPFA (Multi Point Flux Approximation) und gemischt-hybride Finite Element Methoden für Fluss und Transport in porösen Medien
Prof. Dr. Peter Knabner
(01.01.2012 - 31.12.2013)


Entwicklung neuer photokatalytischer Filtersysteme zur Luftreinigung von Nanopartikeln, organischen Zusätzen und Bakterien mit Hilfe numerischer Simulationen
Prof. Dr. Peter Knabner
(01.10.2009 - 30.09.2011)


Efficient Numerical Methods for Large Partial Differential Complementarity Systems arising in Multispecies Reactive Transport with Minerals in Porous Media
Prof. Dr. Peter Knabner; PD Dr. Serge Kräutle
(01.01.2007 - 31.12.2011)



Publikationen (Download BibTeX)

Go to first page Go to previous page 11 von 12 Go to next page Go to last page

Knabner, P., & Igler, B.A. (1998). Identification of Nonlinearities in PDEs: Sorption Isotherms in Reactive Flow Through Porous Media. In Bock H (Eds.), ENUMATH 97, World Scientific, Singapore. Singapore.
Barrett, J.W., & Knabner, P. (1998). An improved error bound for a Lagrange-Galerkin method for contaminant transport with non-lipschitzian adsorption kinetics. SIAM Journal on Numerical Analysis, 35(5), 1862-1882.
Knabner, P., Van Duijn, C.J., & Schotting, R.J. (1998). An analysis of crystal dissolution fronts in flows through porous media part 2: incompatible boundary conditions. Advances in Water Resources, 22(1), 1-16. https://dx.doi.org/10.1016/S0309-1708(97)00038-9
Knabner, P., Tapp, C., & Thiele, K. (1998). Adaptive Finite Volume Discretization of Density Driven Flows in Porous Media. Acta Mathematica Universitatis Comenianae, 67, 115-136.
Borchers, W., Forestier, Y., Kräutle, S., Pasquetti, R., Peyret, R., Rautmann, R.,... Sabbah, C. (1998). A Parallel Hybrid Highly Accurate Elliptic Solver for Viscous Flow Problems. In Ernst Heinrich Hirschel (Eds.), Numerical Flow Simulation I (pp. 3-24). Berlin Heidelberg: Springer.
Angermann, L., Knabner, P., & Thiele, K. (1998). An error estimator for a finite volume discretization of density driven flow in porous media. Applied Numerical Mathematics, 26, 179-191. https://dx.doi.org/10.1016/S0168-9274(97)00084-6
Igler, B.A., Totsche, K.U., & Knabner, P. (1998). Identification of Nonlinear Sorption Isotherms by Soil Column Breakthrough Experiments. Physics and Chemistry of the Earth, 23(2), 215-219. https://dx.doi.org/10.1016/S0079-1946(98)00016-0
Prechtel, A. (1997). Die Schätzung von Variogrammen durch Betrachtung ihrer Integrale (Diploma thesis).
Barrett, J.W., Kappmeier, H., & Knabner, P. (1997). Lagrange-Galerkin Approximation For Advection-Dominated Contaminant Transport With Nonlinear Equilibrium Or Non-equilibrium Adsorption. In Rainer Helmig, Willi Jäger, Wolfgang Kinzelbach, Peter Knabner, Gabriel Wittum (Eds.), Modeling and Computation in Environmental Sciences (pp. 36-48). Braunschweig, Wiesbaden: Vieweg+Teubner.
Knabner, P., Igler, B.A., Kappmeier, H., Schneid, E., & Hempfling, R. (1997). Trägerbeeinflußter und lösungsvermittelter Transport von Umweltchemikalien in porösen Medien. In Karl-Heinz Hoffmann, Willi Jäger, Thomas Lohmann, Hermann Schunck (Eds.), Mathematik Schlüsseltechnologie für die Zukunft (pp. 231-241). Berlin, Heidelberg: Springer.
Knabner, P., & Schneid, E. (1997). Numerical Solution of Unsteady Saturated/Unsaturated Flow Through Porous Media. In Numerical Modelling in Continuum Mechanics, Part II (pp. 337–343).
Barrett, J.W., & Knabner, P. (1997). Finite element approximation of the transport of reactive solutes in porous media. part II: Error estimates for equilibrium adsorption processes. SIAM Journal on Numerical Analysis, 34(2), 455-479. https://dx.doi.org/10.1137/S0036142993258191
Van Duijn, C.J., & Knabner, P. (1997). Travelling wave behaviour of crystal dissolution in porous media flow. European Journal of Applied Mathematics, 8(1), 49-72.
Barrett, J.W., & Knabner, P. (1997). Finite Element Approximation of the Transport of Reactive Solutes in Porous Media. Part 1: Error Estimates for Nonequilibrium Adsorption Processes. SIAM Journal on Numerical Analysis, 34(1), 201-227. https://dx.doi.org/10.1137/S0036142993249024
Kräutle, S. (1996). Approximationen der Navier-Stokes-Gleichungen mit Finiten Differenzen (Diploma thesis).
Knabner, P., & Frolkovic, P. (1996). Consistent Velocity Approximations in Finite Element or Volume Discretizations of Density Driven Flow. In Computational Methods in Water Resources (pp. 93–100). Computational Mechanics Publication, Southampton.
Van Duijn, C.J., & Knabner, P. (1996). Crystal dissolution in porous media flow. ZAMM - Zeitschrift für angewandte Mathematik und Mechanik, 76, 329-332.
Knabner, P., Totsche, K.U., & Kögel-Knabner, I. (1996). The modeling of reactive solute transport with sorption to mobile and immobile sorbents. 1. Experimental evidence and model development. Water Resources Research, 32(6), 1611-1622. https://dx.doi.org/10.1029/95WR02994
Knabner, P., & Schneid, E. (1996). Qualitative Properties of a Model for Carrier Facilitated Groundwater Contaminant Transport. In Frerich Keil, Wolfgang Mackens, Heinrich Voß, Joachim Werther (Eds.), Scientific Computing in Chemical Engineering (pp. 129-135). Berlin, Heidelberg: Springer.
Totsche, K.U., Knabner, P., & Kögel-Knabner, I. (1996). The modeling of reactive solute transport with sorption to mobile and immobile sorbents. 2. Model discussion and numerical simulation. Water Resources Research, 32(6), 1623-1634. https://dx.doi.org/10.1029/95WR02993

Zuletzt aktualisiert 2019-24-04 um 10:19