Lehrstuhl für Angewandte Mathematik

Adresse:
Cauerstraße 11
91058 Erlangen



Untergeordnete Organisationseinheiten

Professur für Angewandte Mathematik
Professur für Angewandte Mathematik
Professur für Angewandte Mathematik (Mathematische Modellierung)


Forschungsbereiche

Multicomponent reactive transport in natural porous media
Multiscale modeling, analysis and simulation of reaction-diffusion processes in porous media. Application to carbohydrat
Geophysical free surface flows
Multiphase flow in natural porous media
Emergence in natural porous media
Stochastic modeling of transport processes in porous media


Forschungsprojekt(e)

Go to first page Go to previous page 1 von 4 Go to next page Go to last page

(DFG Schwerpunktprogramm 2089 “Rhizosphere Spatiotemporal Organisation – a Key to Rhizosphere Functions”):
Mehrskalenmodellierung mit veränderlicher Mikrostruktur: Ein Ansatz
zur Emergenz in der Rhizosphäre mit effektiven Bodenfunktionen
Dr. Alexander Prechtel; Dr. Raphael Schulz
(01.02.2019 - 31.01.2022)


PPP Frankreich 2019 Phase I
Prof. Dr. Martin Burger
(01.01.2019 - 31.12.2020)


(Nonlocal Methods for Arbitrary Data Sources):
NoMADS: Nonlocal Methods for Arbitrary Data Sources
Prof. Dr. Martin Burger
(01.10.2018 - 28.02.2022)


SBCL-Vektor: Implementation von Vektoroperationen für SBCL
Marco Heisig; PD Dr. Nicolas Neuß
(10.07.2018 - 31.03.2019)


MED4D: "Verbundprojekt MED4D: Dynamische Medizinische Bildgebung: Modellierung und Analyse medizinischer Daten für verbesserte Diagnose, Überwachung und Arzneimittelentwicklung"
Prof. Dr. Martin Burger
(01.12.2016 - 30.11.2019)



Publikationen (Download BibTeX)

Go to first page Go to previous page 11 von 11 Go to next page Go to last page

Knabner, P., & Schneid, E. (1997). Numerical Solution of Unsteady Saturated/Unsaturated Flow Through Porous Media. In Numerical Modelling in Continuum Mechanics, Part II (pp. 337–343).
Knabner, P., Igler, B.A., Kappmeier, H., Schneid, E., & Hempfling, R. (1997). Trägerbeeinflußter und lösungsvermittelter Transport von Umweltchemikalien in porösen Medien. In Karl-Heinz Hoffmann, Willi Jäger, Thomas Lohmann, Hermann Schunck (Eds.), Mathematik Schlüsseltechnologie für die Zukunft (pp. 231-241). Berlin, Heidelberg: Springer.
Barrett, J.W., & Knabner, P. (1997). Finite Element Approximation of the Transport of Reactive Solutes in Porous Media. Part 1: Error Estimates for Nonequilibrium Adsorption Processes. SIAM Journal on Numerical Analysis, 34(1), 201-227. https://dx.doi.org/10.1137/S0036142993249024
Kräutle, S. (1996). Approximationen der Navier-Stokes-Gleichungen mit Finiten Differenzen (Diploma thesis).
Knabner, P., Totsche, K.U., & Kögel-Knabner, I. (1996). The modeling of reactive solute transport with sorption to mobile and immobile sorbents. 1. Experimental evidence and model development. Water Resources Research, 32(6), 1611-1622. https://dx.doi.org/10.1029/95WR02994
Knabner, P., & Schneid, E. (1996). Qualitative Properties of a Model for Carrier Facilitated Groundwater Contaminant Transport. In Frerich Keil, Wolfgang Mackens, Heinrich Voß, Joachim Werther (Eds.), Scientific Computing in Chemical Engineering (pp. 129-135). Berlin, Heidelberg: Springer.
Van Duijn, C.J., & Knabner, P. (1996). Crystal dissolution in porous media flow. ZAMM - Zeitschrift für angewandte Mathematik und Mechanik, 76, 329-332.
Totsche, K.U., Knabner, P., & Kögel-Knabner, I. (1996). The modeling of reactive solute transport with sorption to mobile and immobile sorbents. 2. Model discussion and numerical simulation. Water Resources Research, 32(6), 1623-1634. https://dx.doi.org/10.1029/95WR02993
Knabner, P., & Frolkovic, P. (1996). Consistent Velocity Approximations in Finite Element or Volume Discretizations of Density Driven Flow. In Computational Methods in Water Resources (pp. 93–100). Computational Mechanics Publication, Southampton.
Barrett, J.W., & Knabner, P. (1995). Analysis and Finite Element Approximation of Transport of Reactive Solutes in Porous Media. In Alain Bourgeat et al. (Eds.), Mathematical Modelling of Flow through Porous Media (pp. 75–99). St. Etienne, FR: Singapore: World Scientific Publishers.
Knabner, P., Van Duijn, C.J., & Hengst, S. (1995). An analysis of crystal dissolution fronts in flows through porous media. Part 1: Compatible boundary conditions. Advances in Water Resources, 18(3), 171-185. https://dx.doi.org/10.1016/0309-1708(95)00005-4
Van Duijn, C.J., & Knabner, P. (1994). Flow and reactive transport in porous media induced by well injection: Similarity solution. IMA Journal of Applied Mathematics, 52(2), 177-200. https://dx.doi.org/10.1093/imamat/52.2.177
Knabner, P., Barrett, J.W., & Kappmeier, H. (1994). Lagrange-Galerkin Approximation of Advection-Dominated Nonlinear Contaminant Transport in Porous Media. In Computational Methods in Water Resources (pp. 299-308).
Van Duijn, C.J., Knabner, P., & van der Zee, S.E.A.T.M. (1993). Travelling waves during the transport of reactive solute in porous media: Combination of Langmuir and Freundlich isotherms. Advances in Water Resources, 16(2), 97-105. https://dx.doi.org/10.1016/0309-1708(93)90001-V
Knabner, P. (1991). Mathematische Modelle für Transport und Sorption gelöster Stoffe in porösen Medien. Peter Lang.

Zuletzt aktualisiert 2018-31-08 um 23:50