Lehrstuhl für Angewandte Mathematik

Adresse:
Cauerstraße 11
91058 Erlangen



Untergeordnete Organisationseinheiten

Professur für Angewandte Mathematik
Professur für Angewandte Mathematik
Professur für Angewandte Mathematik (Mathematische Modellierung)


Forschungsbereiche

Multicomponent reactive transport in natural porous media
Multiscale modeling, analysis and simulation of reaction-diffusion processes in porous media. Application to carbohydrat
Geophysical free surface flows
Multiphase flow in natural porous media
Emergence in natural porous media
Stochastic modeling of transport processes in porous media


Forschungsprojekt(e)

Go to first page Go to previous page 1 von 4 Go to next page Go to last page

(DFG Schwerpunktprogramm 2089 “Rhizosphere Spatiotemporal Organisation – a Key to Rhizosphere Functions”):
Mehrskalenmodellierung mit veränderlicher Mikrostruktur: Ein Ansatz
zur Emergenz in der Rhizosphäre mit effektiven Bodenfunktionen
Dr. Alexander Prechtel; Dr. Raphael Schulz
(01.02.2019 - 31.01.2022)


PPP Frankreich 2019 Phase I
Prof. Dr. Martin Burger
(01.01.2019 - 31.12.2020)


(Nonlocal Methods for Arbitrary Data Sources):
NoMADS: Nonlocal Methods for Arbitrary Data Sources
Prof. Dr. Martin Burger
(01.10.2018 - 28.02.2022)


SBCL-Vektor: Implementation von Vektoroperationen für SBCL
Marco Heisig; PD Dr. Nicolas Neuß
(10.07.2018 - 31.03.2019)


Buchgutscheine: Innovationsfonds 2017: Urkunden und Buchgutscheine für gute Leistungen in Anfängervorlesungen
PD Dr. Nicolas Neuß
(01.07.2017 - 30.09.2020)



Publikationen (Download BibTeX)

Go to first page Go to previous page 11 von 13 Go to next page Go to last page

Neuss-Radu, M. (2001). The boundary behavior of a composite material. Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique Et Analyse Numerique, 35(3), 407-435. https://dx.doi.org/10.1051/m2an:2001122
Knabner, P., & Summ, G. (2001). The invertibility of the isoparametric mapping for pyramidal and prismatic finite elements. Numerische Mathematik, 88(4), 661-681. https://dx.doi.org/10.1007/PL00005454
Kräutle, S. (2001). A Navier-Stokes solver based on CGBI and the method of characteristics (Dissertation).
Knabner, P., Tapp, C., & Thiele, K. (2001). Adaptivity in the finite volume discretization of variable density flows in porous media. Physics and Chemistry of the Earth, Part B, 26(4), 319-324. https://dx.doi.org/10.1016/S1464-1909(01)00013-2
Kräutle, S., & Wielage, K. (2001). Numerical results for the CGBI method to viscous channel flow. In Rodolfo Salvi (Eds.), The Navier-Stokes Equations: Theory and Numerical Methods (pp. 247-255).
Kräutle, S., & Wielage, K. (2001). The CGBI method for viscous channel flows and its preconditioning. Nonlinear Analysis - Theory Methods & Applications, 47(6), 4193-4203. https://dx.doi.org/10.1016/S0362-546X(01)00536-3
Borchers, W., Kräutle, S., Pasquetti, R., Rautmann, R., Roß, N., Wielage, K., & Xu, C. (2001). Towards a parallel hybrid highly accurate Navier-Stokes solver. In Ernst Heinrich Hirschel (Eds.), Numerical Flow Simulation II (pp. 3-18). Berlin Heidelberg: Springer.
Knabner, P., Korotov, S., & Summ, G. (2001). Conditions for the Invertibility of the Isoparametric Mapping for 3D Multilinear Finite Elements. In Hackbusch W, Langer U (Eds.), 17th GAMM-Seminar Leipzig on Construction of Grid Generation Algorithms. Leipzig, DE.
Schneid, E., Prechtel, A., & Knabner, P. (2000). A comprehensive tool for the simulation of complex reactive transport and flow in soils. Land Contamination and Reclamation, 8(4), 357-365.
Knabner, P., & Otto, F. (2000). Solute transport in porous media with equilibrium and nonequilibrium multiple-site adsorption: Uniqueness of weak solutions. Nonlinear Analysis - Theory Methods & Applications, 42(3), 381-403. https://dx.doi.org/10.1016/S0362-546X(98)00352-6
Knabner, P., & Angermann, L. (2000). Numerik partieller Differentialgleichungen. Berlin-Heidelberg: Springer.
Dawson, C., Aizinger, V., & Cockburn, B. (2000). The Local Discontinuous Galerkin method for contaminant transport problems. In Cockburn B, Karniadakis GE, Shu C (Eds.), Discontinuous Galerkin Methods (pp. 309-314). Springer.
Knabner, P., & Igler, B.A. (2000). Structural Identification of Nonlinear Coefficient Functions in Transport Processes through Porous Media. In Hans-Joachim Bungartz, Ronald H. W. Hoppe, Christoph Zenger (Eds.), Lectures on Applied Mathematics (pp. 157-175). Berlin, Heidelberg: Springer.
Neuss-Radu, M. (2000). A result on the decay of the boundary layers in the homogenization theory. Asymptotic Analysis, 23, 313-328.
Knabner, P., De Neef, M.J., & Summ, G. (1999). Transient Numerical Simulation of Combustion in Inert Porous Media. ZAMM - Zeitschrift für angewandte Mathematik und Mechanik, 79(S1), 45-48. https://dx.doi.org/10.1002/zamm.19990791312
De Neef, M.J., Knabner, P., & Summ, G. (1999). Numerical Bifurcation Analysis of Premixed Combustion in Porous Inert Media. In Hans-Joachim Bungartz, Franz Durst, Christoph Zenger (Eds.), High Performance Scientific and Engineering Computing (pp. 39-50). Berlin, Heidelberg: Springer.
Knabner, P., & Summ, G. (1999). Hybrid Mixed Discretization Methods for Combustion Problems in Porous Media. In al. FK (Eds.), Scientific Computing in Chemical Engineering II (pp. 110-117).
Prechtel, A. (1998). La pollution d'un site par des hydrocarbures - aspects de la modélisation hydrogéologique et étude géostatistique (Diploma thesis).
Barrett, J.W., & Knabner, P. (1998). An improved error bound for a Lagrange-Galerkin method for contaminant transport with non-lipschitzian adsorption kinetics. SIAM Journal on Numerical Analysis, 35(5), 1862-1882.
Angermann, L., Knabner, P., & Thiele, K. (1998). An error estimator for a finite volume discretization of density driven flow in porous media. Applied Numerical Mathematics, 26, 179-191. https://dx.doi.org/10.1016/S0168-9274(97)00084-6

Zuletzt aktualisiert 2019-24-04 um 10:19