Lehrstuhl für Angewandte Mathematik (Modellierung und Numerik)

Adresse:
Cauerstraße 11
91058 Erlangen



Untergeordnete Organisationseinheiten

Professur für Angewandte Mathematik
Professur für Angewandte Mathematik (Analysis und Numerik partieller Differentialgleichungen)
Professur für Angewandte Mathematik (Mathematische Modellierung)


Forschungsbereiche

Multicomponent reactive transport in natural porous media
Multiscale modeling, analysis and simulation of reaction-diffusion processes in porous media. Application to carbohydrat
Geophysical free surface flows
Multiphase flow in natural porous media
Emergence in natural porous media
Stochastic modeling of transport processes in porous media


Forschungsprojekt(e)

Go to first page Go to previous page 4 von 5 Go to next page Go to last page

Efficient Numerical Methods for Large Partial Differential Complementarity Systems arising in Multispecies Reactive Transport with Minerals in Porous Media
Prof. Dr. Peter Knabner; PD Dr. Serge Kräutle
(01.01.2007 - 31.12.2011)


Der Einfluss von Kolloiden auf Wasserfluss und Stofftransport in Böden: Randaspekt oder Schlüsselprozess?
Prof. Dr. Peter Knabner
(01.11.2006 - 31.12.2009)


(Identifikation, Optimierung und Steuerung für technische Anwendungen):
Identifizierung nichtlinearer Koeffizientenfunktionen des reaktiven Transports durch poröse Medien unter Verwendung rekursiver und formfreier Ansätze
Prof. Dr. Peter Knabner
(01.06.2006 - 30.04.2010)


(Kontrollierter natürlicher Rückhalt und Abbau von Schadstoffen bei der Sanierung kontaminierter Böden und Grundwässer (BMBF Förderschwerpunkt KORA)):
Modellierung des reaktiven Transports von Schadstoffen in der (un-)gesättigten Bodenzone zur Prognose der natürlichen Selbstreinigung
Dr. Alexander Prechtel; Prof. Dr. Peter Knabner
(01.04.2004 - 31.12.2008)


(Nachhaltige Altlastenbewältigung unter Einbeziehung des natürlichen Reinigungsvermögens):
Entwicklung einer Simulationssoftware zur Prognose von Schadstoffausbreitung und -abbau in der (un-)gesättigten Bodenzone
Prof. Dr. Peter Knabner; Prof. Dr. Ulrich Rüde
(01.06.2001 - 31.05.2003)



Publikationen (Download BibTeX)

Go to first page Go to previous page 1 von 15 Go to next page Go to last page

Schulz, R., Ray, N., Zech, S., Rupp, A., & Knabner, P. (2019). Beyond Kozeny-Carman: Predicting the Permeability in Porous Media. Transport in Porous Media. https://dx.doi.org/10.1007/s11242-019-01321-y
Bloemker, D., Schillings, C., Wacker, P.K., & Weissmann, S. (2019). Well posedness and convergence analysis of the ensemble Kalman inversion. Inverse Problems, 35(8). https://dx.doi.org/10.1088/1361-6420/ab149c
Rupp, A. (2019). Simulating Structure Formation in Soils across Scales using Discontinuous Galerkin Methods (Dissertation).
Bungert, L., Burger, M., & Tenbrinck, D. (2019). Computing Nonlinear Eigenfunctions via Gradient Flow Extinction. In Scale Space and Variational Methods in Computer Vision - 7th International Conference, SSVM 2019, Proceedings. (pp. 291-302). Springer Verlag.
Neuß, N. (2019). Mathematik für Anwender.
Hajduk, H., Kuzmin, D., & Aizinger, V. (2019). New directional vector limiters for discontinuous Galerkin methods. Journal of Computational Physics, 384, 308-325. https://dx.doi.org/10.1016/j.jcp.2019.01.032
Reuter, B., Rupp, A., Aizinger, V., & Knabner, P. (2019). Discontinuous Galerkin method for coupling hydrostatic free surface flows to saturated subsurface systems. Computers & Mathematics With Applications, 77(9), 2291-2309. https://dx.doi.org/10.1016/j.camwa.2018.12.020
Class, H., Knabner, P., Pop, I.S., & Radu, F.A. (2019). Multiphase, multicomponent flow in deformable porous media: modelling and simulation (Dedicated to Prof. Dr.-Ing. Rainer Helmig on the occasion of his 60th birthday). Computational Geosciences, 23(2), 203-205. https://dx.doi.org/10.1007/s10596-019-9814-4
Schulz, R. (2019). Biofilm modeling in evolving porous media with Beavers-Joseph condition. ZAMM - Zeitschrift für angewandte Mathematik und Mechanik, 99(3). https://dx.doi.org/10.1002/zamm.201800123
Knodel, M., Targett-Adams, P., Grillo, A., Herrmann, E., & Wittum, G. (2019). Advanced Hepatitis C Virus Replication PDE Models within a Realistic Intracellular Geometric Environment. International Journal of Environmental Research and Public Health, 16(3). https://dx.doi.org/10.3390/ijerph16030513
Brunner, F., & Knabner, P. (2019). A global implicit solver for miscible reactive multiphase multicomponent flow in porous media. Computational Geosciences, 23(1), 127-148. https://dx.doi.org/10.1007/s10596-018-9788-7
Burger, M., Korolev, Y., & Rasch, J. (2019). Convergence rates and structure of solutions of inverse problems with imperfect forward models. Inverse Problems, 35(2). https://dx.doi.org/10.1088/1361-6420/aaf6f5
Liu, C., Frank, F., & Rivière, B. (2019). Numerical error analysis for nonsymmetric interior penalty discontinuous Galerkin method of Cahn–Hilliard equation. Numerical Methods For Partial Differential Equations. https://dx.doi.org/10.1002/num.22362
Bungert, L., & Burger, M. (2019). Asymptotic Profiles of Nonlinear Homogeneous Evolution Equations of Gradient Flow Type. (Unpublished, Submitted).
Wacker, P.K., & Knabner, P. (2019). Wavelet-Based Priors Accelerate Maximum-a-Posteriori Optimization in Bayesian Inverse Problems. Methodology and Computing in Applied Probability, 1-27. https://dx.doi.org/10.1007/s11009-019-09736-2
Liu, C., Frank, F., Alpak, F.O., & Rivière, B. (2019). An interior penalty discontinuous Galerkin approach for 3D incompressible Navier–Stokes equation for permeability estimation of porous media. Journal of Computational Physics, 396, 669-686. https://dx.doi.org/10.1016/j.jcp.2019.06.052
Bungert, L., & Burger, M. (2019). Solution paths of variational regularization methods for inverse problems. Inverse Problems. https://dx.doi.org/10.1088/1361-6420/ab1d71
Di Stefano, S., Carfagna, M., Knodel, M., Hashlamoun, K., Federico, S., & Grillo, A. (2019). Anelastic reorganisation of fibre-reinforced biological tissues. Computing and Visualization in Science. https://dx.doi.org/10.1007/s00791-019-00313-1
Burger, M., Korolev, Y., Schönlieb, C.B., & Stollenwerk, C. (2019). A Total Variation Based Regularizer Promoting Piecewise-Lipschitz Reconstructions. In Jan Lellmann, Jan Modersitzki, Martin Burger (Eds.), Lecture Notes in Computer Science (pp. 485-497). Hofgeismar, DE: Springer Verlag.
Lieu, A. (2019). A Domain Decomposition Method with High-Order Finite Elements for Flow Acoustics. In Proceedings of the 25th AIAA/CEAS Aeroacoustics Conference. Delft, The Netherlands.

Zuletzt aktualisiert 2019-11-07 um 23:51