Lehrstuhl für Angewandte Mathematik

Adresse:
Cauerstraße 11
91058 Erlangen



Untergeordnete Organisationseinheiten

Professur für Angewandte Mathematik
Professur für Angewandte Mathematik
Professur für Angewandte Mathematik (Mathematische Modellierung)


Forschungsbereiche

Multicomponent reactive transport in natural porous media
Multiscale modeling, analysis and simulation of reaction-diffusion processes in porous media. Application to carbohydrat
Geophysical free surface flows
Multiphase flow in natural porous media
Emergence in natural porous media
Stochastic modeling of transport processes in porous media


Forschungsprojekt(e)

Go to first page Go to previous page 3 von 4 Go to next page Go to last page

LifeInverse: Variational Methods for Dynamic Inverse Problems in the Life Sciences
Prof. Dr. Martin Burger
(01.03.2014 - 28.02.2019)


Implementierung und Optimierung von Stencil-Operationen auf gestaffelten hierarchischen Gittern
Prof. Dr. Eberhard Bänsch; PD Dr. Nicolas Neuß
(01.06.2013 - 01.10.2014)


MPFA (Multi Point Flux Approximation) und gemischt-hybride Finite Element Methoden für Fluss und Transport in porösen Medien
Prof. Dr. Peter Knabner
(01.01.2012 - 31.12.2013)


Entwicklung neuer photokatalytischer Filtersysteme zur Luftreinigung von Nanopartikeln, organischen Zusätzen und Bakterien mit Hilfe numerischer Simulationen
Prof. Dr. Peter Knabner
(01.10.2009 - 30.09.2011)


Efficient Numerical Methods for Large Partial Differential Complementarity Systems arising in Multispecies Reactive Transport with Minerals in Porous Media
Prof. Dr. Peter Knabner; PD Dr. Serge Kräutle
(01.01.2007 - 31.12.2011)



Publikationen (Download BibTeX)

Go to first page Go to previous page 1 von 13 Go to next page Go to last page

Neuß, N. (2019). Mathematik für Anwender.
Hajduk, H., Kuzmin, D., & Aizinger, V. (2019). New directional vector limiters for discontinuous Galerkin methods. Journal of Computational Physics, 384, 308-325. https://dx.doi.org/10.1016/j.jcp.2019.01.032
Reuter, B., Rupp, A., Aizinger, V., & Knabner, P. (2019). Discontinuous Galerkin method for coupling hydrostatic free surface flows to saturated subsurface systems. Computers & Mathematics With Applications, 77(9), 2291-2309. https://dx.doi.org/10.1016/j.camwa.2018.12.020
Class, H., Knabner, P., Pop, I.S., & Radu, F.A. (2019). Multiphase, multicomponent flow in deformable porous media: modelling and simulation (Dedicated to Prof. Dr.-Ing. Rainer Helmig on the occasion of his 60th birthday). Computational Geosciences, 23(2), 203-205. https://dx.doi.org/10.1007/s10596-019-9814-4
Schulz, R. (2019). Biofilm modeling in evolving porous media with Beavers-Joseph condition. ZAMM - Zeitschrift für angewandte Mathematik und Mechanik, 99(3). https://dx.doi.org/10.1002/zamm.201800123
Brunner, F., & Knabner, P. (2019). A global implicit solver for miscible reactive multiphase multicomponent flow in porous media. Computational Geosciences, 23(1), 127-148. https://dx.doi.org/10.1007/s10596-018-9788-7
Burger, M., Korolev, Y., & Rasch, J. (2019). Convergence rates and structure of solutions of inverse problems with imperfect forward models. Inverse Problems, 35(2). https://dx.doi.org/10.1088/1361-6420/aaf6f5
Knodel, M., Targett-Adams, P., Grillo, A., Herrmann, E., & Wittum, G. (2019). Advanced Hepatitis C Virus Replication PDE Models within a Realistic Intracellular Geometric Environment. International Journal of Environmental Research and Public Health, 16(3). https://dx.doi.org/10.3390/ijerph16030513
Liu, C., Frank, F., & Rivière, B. (2019). Numerical error analysis for nonsymmetric interior penalty discontinuous Galerkin method of Cahn–Hilliard equation. Numerical Methods For Partial Differential Equations. https://dx.doi.org/10.1002/num.22362
Bungert, L., & Burger, M. (2019). Solution paths of variational regularization methods for inverse problems. Inverse Problems. https://dx.doi.org/10.1088/1361-6420/ab1d71
Werner, P., Burger, M., & Pietschmann, J.-F. (2019). A PDE model for bleb formation and interaction with linker proteins. (Unpublished, Submitted).
Bungert, L., Burger, M., Chambolle, A., & Novaga, M. (2019). Nonlinear Spectral Decompositions by Gradient Flows of One-Homogeneous Functionals. (Unpublished, Submitted).
Lieu, A. (2019). A Domain Decomposition Method with High-Order Finite Elements for Flow Acoustics. In Proceedings of the 25th AIAA/CEAS Aeroacoustics Conference. Delft, The Netherlands.
Gahn, M., Neuss-Radu, M., & Knabner, P. (2018). EFFECTIVE INTERFACE CONDITIONS FOR PROCESSES THROUGH THIN HETEROGENEOUS LAYERS WITH NONLINEAR TRANSMISSION AT THE MICROSCOPIC BULK-LAYER INTERFACE. Networks and Heterogeneous Media, 13(4), 609-640. https://dx.doi.org/10.3934/nhm.2018028
Föcke, J., Baumgarten, D., & Burger, M. (2018). The inverse problem of magnetorelaxometry imaging. Inverse Problems, 34(11). https://dx.doi.org/10.1088/1361-6420/aadbbf
Föcke, J. (2018). SiMRX - A Simulation toolbox for MRX.
Mu, X., Frank, F., Rivière, B., Alpak, F.O., & Chapman, W.G. (2018). Mass-conserved density gradient theory model for nucleation process. Industrial & Engineering Chemistry Research. https://dx.doi.org/10.1021/acs.iecr.8b03389
Frank, F., Liu, C., Alpak, F.O., Berg, S., & Rivière, B. (2018). Direct numerical simulation of flow on pore-scale images using the phase-field method. Spe Journal, 23(5), 1–18. https://dx.doi.org/10.2118/182607-PA
Rupp, A., Totsche, K.U., Prechtel, A., & Ray, N. (2018). Discrete-Continuum Multiphase Model for Structure Formation in Soils Including Electrostatic Effects. Frontiers in Environmental Science, 6. https://dx.doi.org/10.3389/fenvs.2018.00096
Burger, M. (2018). Dynamic MRI reconstruction from undersampled data with an anatomical prescan. Inverse Problems, 34(7). https://dx.doi.org/10.1088/1361-6420/aac3af

Zuletzt aktualisiert 2019-24-04 um 10:19