Lehrstuhl für Angewandte Mathematik

Adresse:
Cauerstraße 11
91058 Erlangen



Untergeordnete Organisationseinheiten

Professur für Angewandte Mathematik
Professur für Angewandte Mathematik
Professur für Angewandte Mathematik (Mathematische Modellierung)


Forschungsbereiche

Multicomponent reactive transport in natural porous media
Multiscale modeling, analysis and simulation of reaction-diffusion processes in porous media. Application to carbohydrat
Geophysical free surface flows
Multiphase flow in natural porous media
Emergence in natural porous media
Stochastic modeling of transport processes in porous media


Forschungsprojekt(e)

Go to first page Go to previous page 2 von 4 Go to next page Go to last page

MED4D: "Verbundprojekt MED4D: Dynamische Medizinische Bildgebung: Modellierung und Analyse medizinischer Daten für verbesserte Diagnose, Überwachung und Arzneimittelentwicklung"
Prof. Dr. Martin Burger
(01.12.2016 - 30.11.2019)


(DFG RU 2179 “MAD Soil - Microaggregates: Formation and turnover of the structural building blocks of soils”):
Mechanistische Modellierung der Formation und Konsolidierung von Mikroaggregaten in Böden
Dr. Alexander Prechtel; Dr. Nadja Ray
(01.01.2016 - 31.12.2019)


SCIDATOS: COMPUTER GESTÜTZTE FRÜHERKENNUNG UND THERAPIE DER SEPSIS
PD Dr. Maria Neuss-Radu
(15.10.2015 - 28.02.2019)


Distributed High Performance Computing in Common Lisp
Prof. Dr. Eberhard Bänsch; PD Dr. Nicolas Neuß
(01.10.2015 - 31.03.2016)


DAAD Austauschprogramm: PPP Finnland 2017: Bayesian Inverse Problems in Banach Space
Prof. Dr. Martin Burger
(25.01.2015 - 31.12.2017)



Publikationen (Download BibTeX)

Go to first page Go to previous page 1 von 13 Go to next page Go to last page

Bungert, L., Burger, M., & Tenbrinck, D. (2019). Computing Nonlinear Eigenfunctions via Gradient Flow Extinction. In Scale Space and Variational Methods in Computer Vision - 7th International Conference, SSVM 2019, Proceedings. (pp. 291-302). Springer Verlag.
Neuß, N. (2019). Mathematik für Anwender.
Reuter, B., Rupp, A., Aizinger, V., & Knabner, P. (2019). Discontinuous Galerkin method for coupling hydrostatic free surface flows to saturated subsurface systems. Computers & Mathematics With Applications, 77(9), 2291-2309. https://dx.doi.org/10.1016/j.camwa.2018.12.020
Hajduk, H., Kuzmin, D., & Aizinger, V. (2019). New directional vector limiters for discontinuous Galerkin methods. Journal of Computational Physics, 384, 308-325. https://dx.doi.org/10.1016/j.jcp.2019.01.032
Class, H., Knabner, P., Pop, I.S., & Radu, F.A. (2019). Multiphase, multicomponent flow in deformable porous media: modelling and simulation (Dedicated to Prof. Dr.-Ing. Rainer Helmig on the occasion of his 60th birthday). Computational Geosciences, 23(2), 203-205. https://dx.doi.org/10.1007/s10596-019-9814-4
Schulz, R. (2019). Biofilm modeling in evolving porous media with Beavers-Joseph condition. ZAMM - Zeitschrift für angewandte Mathematik und Mechanik, 99(3). https://dx.doi.org/10.1002/zamm.201800123
Burger, M., Korolev, Y., & Rasch, J. (2019). Convergence rates and structure of solutions of inverse problems with imperfect forward models. Inverse Problems, 35(2). https://dx.doi.org/10.1088/1361-6420/aaf6f5
Brunner, F., & Knabner, P. (2019). A global implicit solver for miscible reactive multiphase multicomponent flow in porous media. Computational Geosciences, 23(1), 127-148. https://dx.doi.org/10.1007/s10596-018-9788-7
Knodel, M., Targett-Adams, P., Grillo, A., Herrmann, E., & Wittum, G. (2019). Advanced Hepatitis C Virus Replication PDE Models within a Realistic Intracellular Geometric Environment. International Journal of Environmental Research and Public Health, 16(3). https://dx.doi.org/10.3390/ijerph16030513
Liu, C., Frank, F., & Rivière, B. (2019). Numerical error analysis for nonsymmetric interior penalty discontinuous Galerkin method of Cahn–Hilliard equation. Numerical Methods For Partial Differential Equations. https://dx.doi.org/10.1002/num.22362
Bungert, L., Burger, M., Chambolle, A., & Novaga, M. (2019). Nonlinear Spectral Decompositions by Gradient Flows of One-Homogeneous Functionals. (Unpublished, Submitted).
Bungert, L., & Burger, M. (2019). Asymptotic Profiles of Nonlinear Homogeneous Evolution Equations of Gradient Flow Type. (Unpublished, Submitted).
Lieu, A. (2019). A Domain Decomposition Method with High-Order Finite Elements for Flow Acoustics. In Proceedings of the 25th AIAA/CEAS Aeroacoustics Conference. Delft, The Netherlands.
Werner, P., Burger, M., & Pietschmann, J.-F. (2019). A PDE model for bleb formation and interaction with linker proteins. (Unpublished, Submitted).
Bungert, L., & Burger, M. (2019). Solution paths of variational regularization methods for inverse problems. Inverse Problems. https://dx.doi.org/10.1088/1361-6420/ab1d71
Gahn, M., Neuss-Radu, M., & Knabner, P. (2018). EFFECTIVE INTERFACE CONDITIONS FOR PROCESSES THROUGH THIN HETEROGENEOUS LAYERS WITH NONLINEAR TRANSMISSION AT THE MICROSCOPIC BULK-LAYER INTERFACE. Networks and Heterogeneous Media, 13(4), 609-640. https://dx.doi.org/10.3934/nhm.2018028
Föcke, J., Baumgarten, D., & Burger, M. (2018). The inverse problem of magnetorelaxometry imaging. Inverse Problems, 34(11). https://dx.doi.org/10.1088/1361-6420/aadbbf
Föcke, J. (2018). SiMRX - A Simulation toolbox for MRX.
Mu, X., Frank, F., Rivière, B., Alpak, F.O., & Chapman, W.G. (2018). Mass-conserved density gradient theory model for nucleation process. Industrial & Engineering Chemistry Research. https://dx.doi.org/10.1021/acs.iecr.8b03389
Frank, F., Liu, C., Alpak, F.O., Berg, S., & Rivière, B. (2018). Direct numerical simulation of flow on pore-scale images using the phase-field method. Spe Journal, 23(5), 1–18. https://dx.doi.org/10.2118/182607-PA

Zuletzt aktualisiert 2019-24-04 um 10:19