Lehrstuhl für Angewandte Mathematik

Cauerstraße 11
91058 Erlangen

Untergeordnete Organisationseinheiten

Professur für Angewandte Mathematik
Professur für Angewandte Mathematik
Professur für Angewandte Mathematik (Mathematische Modellierung)


Multicomponent reactive transport in natural porous media
Multiscale modeling, analysis and simulation of reaction-diffusion processes in porous media. Application to carbohydrat
Geophysical free surface flows
Multiphase flow in natural porous media
Emergence in natural porous media
Stochastic modeling of transport processes in porous media


Go to first page Go to previous page 1 von 4 Go to next page Go to last page

(DFG Schwerpunktprogramm 2089 “Rhizosphere Spatiotemporal Organisation – a Key to Rhizosphere Functions”):
Mehrskalenmodellierung mit veränderlicher Mikrostruktur: Ein Ansatz
zur Emergenz in der Rhizosphäre mit effektiven Bodenfunktionen
Dr. Alexander Prechtel; Dr. Raphael Schulz
(01.02.2019 - 31.01.2022)

PPP Frankreich 2019 Phase I
Prof. Dr. Martin Burger
(01.01.2019 - 31.12.2020)

(Nonlocal Methods for Arbitrary Data Sources):
NoMADS: Nonlocal Methods for Arbitrary Data Sources
Prof. Dr. Martin Burger
(01.10.2018 - 28.02.2022)

SBCL-Vektor: Implementation von Vektoroperationen für SBCL
Marco Heisig; PD Dr. Nicolas Neuß
(10.07.2018 - 31.03.2019)

Buchgutscheine: Innovationsfonds 2017: Urkunden und Buchgutscheine für gute Leistungen in Anfängervorlesungen
PD Dr. Nicolas Neuß
(01.07.2017 - 30.09.2020)

Publikationen (Download BibTeX)

Go to first page Go to previous page 1 von 12 Go to next page Go to last page

Neuß, N. (2019). Mathematik für Anwender.
Reuter, B., Rupp, A., Aizinger, V., & Knabner, P. (2019). Discontinuous Galerkin method for coupling hydrostatic free surface flows to saturated subsurface systems. Computers & Mathematics With Applications, 77(9), 2291-2309. https://dx.doi.org/10.1016/j.camwa.2018.12.020
Hajduk, H., Kuzmin, D., & Aizinger, V. (2019). New directional vector limiters for discontinuous Galerkin methods. Journal of Computational Physics, 384, 308-325. https://dx.doi.org/10.1016/j.jcp.2019.01.032
Schulz, R. (2019). Biofilm modeling in evolving porous media with Beavers-Joseph condition. ZAMM - Zeitschrift für angewandte Mathematik und Mechanik, 99(3). https://dx.doi.org/10.1002/zamm.201800123
Brunner, F., & Knabner, P. (2019). A global implicit solver for miscible reactive multiphase multicomponent flow in porous media. Computational Geosciences, 23(1), 127-148. https://dx.doi.org/10.1007/s10596-018-9788-7
Burger, M., Korolev, Y., & Rasch, J. (2019). Convergence rates and structure of solutions of inverse problems with imperfect forward models. Inverse Problems, 35(2). https://dx.doi.org/10.1088/1361-6420/aaf6f5
Knodel, M., Targett-Adams, P., Grillo, A., Herrmann, E., & Wittum, G. (2019). Advanced Hepatitis C Virus Replication PDE Models within a Realistic Intracellular Geometric Environment. International Journal of Environmental Research and Public Health, 16(3). https://dx.doi.org/10.3390/ijerph16030513
Liu, C., Frank, F., & Rivière, B. (2019). Numerical error analysis for nonsymmetric interior penalty discontinuous Galerkin method of Cahn–Hilliard equation. Numerical Methods For Partial Differential Equations. https://dx.doi.org/10.1002/num.22362
Werner, P., Burger, M., & Pietschmann, J.-F. (2019). A PDE model for bleb formation and interaction with linker proteins. (Unpublished, Submitted).
Bungert, L., & Burger, M. (2019). Solution paths of variational regularization methods for inverse problems. Inverse Problems. https://dx.doi.org/10.1088/1361-6420/ab1d71
Bungert, L., Burger, M., Chambolle, A., & Novaga, M. (2019). Nonlinear Spectral Decompositions by Gradient Flows of One-Homogeneous Functionals. (Unpublished, Submitted).
Bungert, L., Burger, M., & Tenbrinck, D. (2019). Computing Nonlinear Eigenfunctions via Gradient Flow Extinction. (Unpublished, Accepted).
Gahn, M., Neuss-Radu, M., & Knabner, P. (2018). EFFECTIVE INTERFACE CONDITIONS FOR PROCESSES THROUGH THIN HETEROGENEOUS LAYERS WITH NONLINEAR TRANSMISSION AT THE MICROSCOPIC BULK-LAYER INTERFACE. Networks and Heterogeneous Media, 13(4), 609-640. https://dx.doi.org/10.3934/nhm.2018028
Föcke, J., Baumgarten, D., & Burger, M. (2018). The inverse problem of magnetorelaxometry imaging. Inverse Problems, 34(11). https://dx.doi.org/10.1088/1361-6420/aadbbf
Föcke, J. (2018). SiMRX - A Simulation toolbox for MRX.
Mu, X., Frank, F., Rivière, B., Alpak, F.O., & Chapman, W.G. (2018). Mass-conserved density gradient theory model for nucleation process. Industrial & Engineering Chemistry Research. https://dx.doi.org/10.1021/acs.iecr.8b03389
Frank, F., Liu, C., Alpak, F.O., Berg, S., & Rivière, B. (2018). Direct numerical simulation of flow on pore-scale images using the phase-field method. Spe Journal, 23(5), 1–18. https://dx.doi.org/10.2118/182607-PA
Rupp, A., Totsche, K.U., Prechtel, A., & Ray, N. (2018). Discrete-Continuum Multiphase Model for Structure Formation in Soils Including Electrostatic Effects. Frontiers in Environmental Science, 6. https://dx.doi.org/10.3389/fenvs.2018.00096
Alpak, F.O., Samardžić, A., & Frank, F. (2018). A distributed parallel direct simulator for pore-scale two-phase flow on digital rock images using a finite difference implementation of the phase-field method. Journal of Petroleum Science and Engineering, 166, 806–824. https://dx.doi.org/10.1016/j.petrol.2017.11.022
Burger, M. (2018). Dynamic MRI reconstruction from undersampled data with an anatomical prescan. Inverse Problems, 34(7). https://dx.doi.org/10.1088/1361-6420/aac3af

Zuletzt aktualisiert 2019-24-04 um 10:19