Lehrstuhl für Angewandte Mathematik (Modellierung und Numerik)

Adresse:
Cauerstraße 11
91058 Erlangen



Untergeordnete Organisationseinheiten

Professur für Angewandte Mathematik
Professur für Angewandte Mathematik (Analysis und Numerik partieller Differentialgleichungen)
Professur für Angewandte Mathematik (Mathematische Modellierung)


Forschungsbereiche

Multicomponent reactive transport in natural porous media
Multiscale modeling, analysis and simulation of reaction-diffusion processes in porous media. Application to carbohydrat
Geophysical free surface flows
Multiphase flow in natural porous media
Emergence in natural porous media
Stochastic modeling of transport processes in porous media


Forschungsprojekt(e)

Go to first page Go to previous page 1 von 5 Go to next page Go to last page

(DFG Schwerpunktprogramm 2089 “Rhizosphere Spatiotemporal Organisation – a Key to Rhizosphere Functions”):
Mehrskalenmodellierung mit veränderlicher Mikrostruktur: Ein Ansatz
zur Emergenz in der Rhizosphäre mit effektiven Bodenfunktionen
Dr. Alexander Prechtel; Dr. Raphael Schulz
(01.02.2019 - 31.01.2022)


PPP Frankreich 2019 Phase I
Prof. Dr. Martin Burger
(01.01.2019 - 31.12.2020)


Integriertes und an Raum-Zeit-Messungsskalen angepasstes Global Random Walk - Modell für reaktiven Transport im Grundwasser
Dr. Nicolae Suciu
(01.10.2018 - 30.09.2021)


(Nonlocal Methods for Arbitrary Data Sources):
NoMADS: Nonlocal Methods for Arbitrary Data Sources
Prof. Dr. Martin Burger
(01.10.2018 - 28.02.2022)


SBCL-Vektor: Implementation von Vektoroperationen für SBCL
Marco Heisig; PD Dr. Nicolas Neuß
(10.07.2018 - 31.03.2019)



Publikationen (Download BibTeX)

Go to first page Go to previous page 1 von 15 Go to next page Go to last page


Schulz, R., Ray, N., Zech, S., Rupp, A., & Knabner, P. (2019). Beyond Kozeny-Carman: Predicting the Permeability in Porous Media. Transport in Porous Media. https://dx.doi.org/10.1007/s11242-019-01321-y
Bloemker, D., Schillings, C., Wacker, P.K., & Weissmann, S. (2019). Well posedness and convergence analysis of the ensemble Kalman inversion. Inverse Problems, 35(8). https://dx.doi.org/10.1088/1361-6420/ab149c
Rupp, A. (2019). Simulating Structure Formation in Soils across Scales using Discontinuous Galerkin Methods (Dissertation).
Bungert, L., Burger, M., & Tenbrinck, D. (2019). Computing Nonlinear Eigenfunctions via Gradient Flow Extinction. In Scale Space and Variational Methods in Computer Vision - 7th International Conference, SSVM 2019, Proceedings. (pp. 291-302). Springer Verlag.
Neuß, N. (2019). Mathematik für Anwender.
Hajduk, H., Kuzmin, D., & Aizinger, V. (2019). New directional vector limiters for discontinuous Galerkin methods. Journal of Computational Physics, 384, 308-325. https://dx.doi.org/10.1016/j.jcp.2019.01.032
Reuter, B., Rupp, A., Aizinger, V., & Knabner, P. (2019). Discontinuous Galerkin method for coupling hydrostatic free surface flows to saturated subsurface systems. Computers & Mathematics With Applications, 77(9), 2291-2309. https://dx.doi.org/10.1016/j.camwa.2018.12.020
Class, H., Knabner, P., Pop, I.S., & Radu, F.A. (2019). Multiphase, multicomponent flow in deformable porous media: modelling and simulation (Dedicated to Prof. Dr.-Ing. Rainer Helmig on the occasion of his 60th birthday). Computational Geosciences, 23(2), 203-205. https://dx.doi.org/10.1007/s10596-019-9814-4
Schulz, R. (2019). Biofilm modeling in evolving porous media with Beavers-Joseph condition. ZAMM - Zeitschrift für angewandte Mathematik und Mechanik, 99(3). https://dx.doi.org/10.1002/zamm.201800123
Brunner, F., & Knabner, P. (2019). A global implicit solver for miscible reactive multiphase multicomponent flow in porous media. Computational Geosciences, 23(1), 127-148. https://dx.doi.org/10.1007/s10596-018-9788-7
Burger, M., Korolev, Y., & Rasch, J. (2019). Convergence rates and structure of solutions of inverse problems with imperfect forward models. Inverse Problems, 35(2). https://dx.doi.org/10.1088/1361-6420/aaf6f5
Knodel, M., Targett-Adams, P., Grillo, A., Herrmann, E., & Wittum, G. (2019). Advanced Hepatitis C Virus Replication PDE Models within a Realistic Intracellular Geometric Environment. International Journal of Environmental Research and Public Health, 16(3). https://dx.doi.org/10.3390/ijerph16030513
Liu, C., Frank, F., & Rivière, B. (2019). Numerical error analysis for nonsymmetric interior penalty discontinuous Galerkin method of Cahn–Hilliard equation. Numerical Methods For Partial Differential Equations. https://dx.doi.org/10.1002/num.22362
Di Stefano, S., Carfagna, M., Knodel, M., Hashlamoun, K., Federico, S., & Grillo, A. (2019). Anelastic reorganisation of fibre-reinforced biological tissues. Computing and Visualization in Science. https://dx.doi.org/10.1007/s00791-019-00313-1
Bungert, L., & Burger, M. (2019). Solution paths of variational regularization methods for inverse problems. Inverse Problems. https://dx.doi.org/10.1088/1361-6420/ab1d71
Burger, M., Föcke, J., Nickel, L., Jung, P., & Augustin, S. (2019). Reconstruction Methods in THz Single-Pixel Imaging. In Holger Boche, Giuseppe Caire, Robert Calderbank, Gitta Kutyniok, Rudolf Mathar, Philipp Petersen (Eds.), Compressed Sensing and Its Applications. (pp. 263-290). Springer International Publishing.
Liu, C., Frank, F., Alpak, F.O., & Rivière, B. (2019). An interior penalty discontinuous Galerkin approach for 3D incompressible Navier–Stokes equation for permeability estimation of porous media. Journal of Computational Physics, 396, 669-686. https://dx.doi.org/10.1016/j.jcp.2019.06.052
Bungert, L., & Burger, M. (2019). Asymptotic Profiles of Nonlinear Homogeneous Evolution Equations of Gradient Flow Type. (Unpublished, Submitted).
Lieu, A. (2019). A Domain Decomposition Method with High-Order Finite Elements for Flow Acoustics. In Proceedings of the 25th AIAA/CEAS Aeroacoustics Conference. Delft, The Netherlands.

Zuletzt aktualisiert 2019-11-07 um 23:51