Lehrstuhl für Angewandte Mathematik

Address:
Cauerstraße 11
91058 Erlangen



Subordinate Organisational Units

Professur für Angewandte Mathematik
Professur für Angewandte Mathematik


Related Project(s)

Go to first page Go to previous page 1 of 3 Go to next page Go to last page

(TRR 154: Mathematische Modellierung, Simulation und Optimierung am Beispiel von Gasnetzwerken):
Decomposition methods for mixed-integer optimal control (A05) (2018 - 2022)
Prof. Dr. Günter Leugering; Prof. Dr. Alexander Martin; Prof. Dr. Martin Schmidt
(01/07/2018 - 30/06/2022)


(SPP 1679: Dynamic Simulation of Interconnected Solids Processes):
Modeling, simulation and optimization of process chains
Prof. Dr. Günter Leugering
(01/01/2015)


MatInEE - Mathematik für Ingenieure: Erfolgreich Einsteigen
Dr. Wigand Rathmann; Nicolai von Schroeders
(01/08/2014)


(TRR 154: Mathematical Modelling, Simulation and Optimisation Using the Example of Gas Networks):
TRR 154: Admissible Robust nodal control (C03)
apl. Prof. Dr. Martin Gugat
(01/07/2014)


(TRR 154: Mathematical Modelling, Simulation and Optimisation Using the Example of Gas Networks):
Mixed integer-continuous dynamical Systems with partial differential equations (A03)
PD Dr. Falk Hante; Prof. Dr. Günter Leugering
(01/07/2014)



Publications (Download BibTeX)

Go to first page Go to previous page 16 of 16 Go to next page Go to last page

Leugering, G. (1987). EXACT BOUNDARY CONTROLLABILITY OF AN INTEGRODIFFERENTIAL EQUATION. Applied Mathematics and Optimization, 15(1), 223-250. https://dx.doi.org/10.1007/BF01442653
Leugering, G. (1987). ON BOUNDARY CONTROLLABILITY OF VOLTERRA INTEGRODIFFERENTIAL EQUATIONS IN HILBERT-SPACES. Lecture Notes in Control and Information Sciences, 102, 234-252. https://dx.doi.org/10.1007/BFb0041994
Leugering, G. (1987). TIME OPTIMAL BOUNDARY CONTROLLABILITY OF A SIMPLE LINEAR VISCOELASTIC LIQUID. Mathematical Methods in the Applied Sciences, 9(3), 413-430. https://dx.doi.org/10.1002/mma.1670090130
Leugering, G. (1986). TIME OPTIMAL BOUNDARY CONTROLLABILITY OF A VISCOELASTIC BEAM. Lecture Notes in Control and Information Sciences, 84, 535-541. https://dx.doi.org/10.1007/BFb0043877
Leugering, G., Krabs, W., & Seidman, T.I. (1985). ON BOUNDARY CONTROLLABILITY OF A VIBRATING PLATE. Applied Mathematics and Optimization, 13(1), 205-229. https://dx.doi.org/10.1007/BF01442208
Leugering, G. (1985). BOUNDARY CONTROLLABILITY IN ONE-DIMENSIONAL LINEAR THERMOVISCOELASTICITY. JOURNAL OF INTEGRAL EQUATIONS, 10(1-3), 157-173.
Leugering, G. (1984). EXACT CONTROLLABILITY IN VISCOELASTICITY OF FADING MEMORY TYPE. Applicable Analysis, 18(3), 221-243. https://dx.doi.org/10.1080/00036818408839521

Last updated on 2019-24-04 at 10:27