Lehrstuhl für Angewandte Mathematik

Address:
Cauerstraße 11
91058 Erlangen



Subordinate Organisational Units

Professur für Angewandte Mathematik
Professur für Angewandte Mathematik


Related Project(s)

Go to first page Go to previous page 1 of 3 Go to next page Go to last page

(TRR 154: Mathematische Modellierung, Simulation und Optimierung am Beispiel von Gasnetzwerken):
Decomposition methods for mixed-integer optimal control (A05) (2018 - 2022)
Prof. Dr. Günter Leugering; Prof. Dr. Alexander Martin; Prof. Dr. Martin Schmidt
(01/07/2018 - 30/06/2022)


(SPP 1679: Dynamic Simulation of Interconnected Solids Processes):
Modeling, simulation and optimization of process chains
Prof. Dr. Günter Leugering
(01/01/2015)


MatInEE - Mathematik für Ingenieure: Erfolgreich Einsteigen
Dr. Wigand Rathmann; Nicolai von Schroeders
(01/08/2014)


(TRR 154: Mathematical Modelling, Simulation and Optimisation Using the Example of Gas Networks):
TRR 154: Admissible Robust nodal control (C03)
apl. Prof. Dr. Martin Gugat
(01/07/2014)


(TRR 154: Mathematical Modelling, Simulation and Optimisation Using the Example of Gas Networks):
Mixed integer-continuous dynamical Systems with partial differential equations (A03)
PD Dr. Falk Hante; Prof. Dr. Günter Leugering
(01/07/2014)



Publications (Download BibTeX)

Go to first page Go to previous page 16 of 16 Go to next page Go to last page

Langnese, J.E., & Leugering, G. (1991). UNIFORM ENERGY DECAY OF A CLASS OF CANTILEVERED NONLINEAR BEAMS WITH NONLINEAR DISSIPATION AT THE FREE END. In Jerome A. Goldstein, Franz Kappel, Wilhelm Schappacher (Eds.), Differential Equations with Applications in Biology, Physics, and Engineering. (pp. 227-239). New York, Basel, Hong Kong: Marcel Dekker, Inc..
Leugering, G. (1991). ON CONTROL AND STABILIZATION OF A ROTATING BEAM BY APPLYING MOMENTS AT THE BASE ONLY. In Prof. Karl-Heinz Hoffmann; Prof. Werner Krabs (Eds.), Optimal Control of Partial Differential Equations - Proceedings of the IFIP WG 7.2 International Conference Irsee, April 9–12, 1990. (pp. 182-191). Berlin; Heidelberg: New York; Springer; 1999.
Leugering, G. (1990). ON BOUNDARY FEEDBACK STABILISABILITY OF A VISCOELASTIC BEAM. Proceedings of the Royal Society of Edinburgh Section A-Mathematics, 114(1-2), 57-69. https://dx.doi.org/10.1017/S0308210500024264
Leugering, G. (1990, January). SOME REMARKS ON EXACT CONTROLLABILITY OF STRINGS AND BEAMS WITH BOUNDARY CONTROLS IN LP(O,T), P-GREATER-THAN-OR-EQUAL-TO-2. Paper presentation at 29th IEEE Conference.
Leugering, G., & Schmidt, E.J.P.G. (1989). BOUNDARY CONTROL OF A VIBRATING PLATE WITH INTERNAL DAMPING. Mathematical Methods in the Applied Sciences, 11(5), 573-586. https://dx.doi.org/10.1002/mma.1670110502
Leugering, G., & Schmidt, E.J.P.G. (1989, January). ON THE CONTROL OF NETWORKS OF VIBRATING STRINGS AND BEAMS. Paper presentation at 28th IEEE Conference.
Leugering, G. (1989). ON BOUNDARY CONTROLLABILITY OF VISCOELASTIC SYSTEMS - Proceedings of the IFIP WG 7.2 Working Conference Santiago de Compostela, Spain, July 6–9, 1987. Lecture Notes in Control and Information Sciences, 114, 190-201. https://dx.doi.org/10.1007/BFb0002592
Leugering, G. (1989). ON THE REACHABILITY PROBLEM OF A VISCOELASTIC BEAM DURING A SLEWING MANEUVER. International Series of Numerical Mathematics, 91, 249-261.
Leugering, G. (1987). EXACT BOUNDARY CONTROLLABILITY OF AN INTEGRODIFFERENTIAL EQUATION. Applied Mathematics and Optimization, 15(1), 223-250. https://dx.doi.org/10.1007/BF01442653
Leugering, G. (1987). ON BOUNDARY CONTROLLABILITY OF VOLTERRA INTEGRODIFFERENTIAL EQUATIONS IN HILBERT-SPACES. Lecture Notes in Control and Information Sciences, 102, 234-252. https://dx.doi.org/10.1007/BFb0041994
Leugering, G. (1987). TIME OPTIMAL BOUNDARY CONTROLLABILITY OF A SIMPLE LINEAR VISCOELASTIC LIQUID. Mathematical Methods in the Applied Sciences, 9(3), 413-430. https://dx.doi.org/10.1002/mma.1670090130
Leugering, G. (1986). TIME OPTIMAL BOUNDARY CONTROLLABILITY OF A VISCOELASTIC BEAM. Lecture Notes in Control and Information Sciences, 84, 535-541. https://dx.doi.org/10.1007/BFb0043877
Leugering, G., Krabs, W., & Seidman, T.I. (1985). ON BOUNDARY CONTROLLABILITY OF A VIBRATING PLATE. Applied Mathematics and Optimization, 13(1), 205-229. https://dx.doi.org/10.1007/BF01442208
Leugering, G. (1985). BOUNDARY CONTROLLABILITY IN ONE-DIMENSIONAL LINEAR THERMOVISCOELASTICITY. JOURNAL OF INTEGRAL EQUATIONS, 10(1-3), 157-173.
Leugering, G. (1984). EXACT CONTROLLABILITY IN VISCOELASTICITY OF FADING MEMORY TYPE. Applicable Analysis, 18(3), 221-243. https://dx.doi.org/10.1080/00036818408839521

Last updated on 2019-24-04 at 10:27