Professur für Mathematik (Darstellungstheorie und Mathematische Physik)

Address:
Cauerstraße 11
91058 Erlangen


Publications (Download BibTeX)

Go to first page Go to previous page 1 of 2 Go to next page Go to last page

Meusburger, C., Ballesteros, A., & Naranjo, P. (2017). AdS Poisson homogeneous spaces and Drinfel'd doubles. Journal of Physics A: Mathematical and Theoretical, 50. https://dx.doi.org/10.1088/1751-8121/aa858c
Meusburger, C. (2017). Kitaev Lattice Models as a Hopf Algebra Gauge Theory. Communications in Mathematical Physics, 353:413, 413-468. https://dx.doi.org/10.1007/s00220-017-2860-7
Meusburger, C., & Uehara Scarinci, C.Y. (2016). Generalized shear coordinates on the moduli spaces of three-dimensional spacetimes. Journal of Differential Geometry, 103(3), 425-474.
Ballestreros, A., Herranz, F.J., Meusburger, C., & Naranjo, P. (2014). Twisted (2+1) κ-AdS algebra, Drinfel'd doubles and non-commutative spacetimes. Symmetry Integrability and Geometry-Methods and Applications, 10. https://dx.doi.org/10.3842/SIGMA.2014.052
Ballestreros, A., Herranz, F.J., & Meusburger, C. (2014). A (2 + 1) non-commutative Drinfel'd double spacetime with cosmological constant. Physics Letters B, 732, 201-209. https://dx.doi.org/10.1016/j.physletb.2014.03.036
Meusburger, C., & Schönfeld, T. (2014). Gauge Fixing and Classical Dynamical r-Matrices in ISO(2, 1)-Chern-Simons Theory. Communications in Mathematical Physics, 327(2), 443-479. https://dx.doi.org/10.1007/s00220-014-1938-8
Bonsante, F., Meusburger, C., & Schlenker, J. (2014). Recovering the Geometry of a Flat Spacetime from Background Radiation. Annales Henri Poincaré, 15(9), 1733-1799. https://dx.doi.org/10.1007/s00023-013-0300-6
Ballesteros, A., Herranz, F.J., & Meusburger, C. (2013). Drinfel'd doubles for (2+1)-gravity. Classical and Quantum Gravity, 30(15). https://dx.doi.org/10.1088/0264-9381/30/15/155012
Meusburger, C., & Fairbairn, W. (2013). Crochets de Poisson, théories de jauge et quantification. In Yvette Kosmann-Schwarzbach (Eds.), Siméon-Denis Poisson: Les mathématiques au service de la science Editions de l´Ecole Polytechnique.
Meusburger, C., & Schönfeld, T. (2013). Gauge fixing and quantum group symmetries in (2+1)-gravity. International Journal of Geometric Methods in Modern Physics, 10(8). https://dx.doi.org/10.1142/S0219887813600049
Fairbairn, W., & Meusburger, C. (2012). Quantum deformation of two four-dimensional spin foam models. Journal of Mathematical Physics, 53(2). https://dx.doi.org/10.1063/1.3675898
Ballesteros, A., Herranz, F.J., & Meusburger, C. (2012). 3d gravity and quantum deformations: A Drinfel'd double approach. Journal of Physics : Conference Series, 360(1). https://dx.doi.org/10.1088/1742-6596/360/1/012010
Barbot, T., & Meusburger, C. (2012). Particles with spin in stationary flat spacetimes. Geometriae Dedicata, 161(1), 23-50. https://dx.doi.org/10.1007/s10711-011-9692-y
Meusburger, C. (2011). Global Lorentzian geometry of lightlike geodesics: what does an observer in (2+1) gravity see? AMS/IP Studies in Advanced Mathematics, 50, 261-276.
Fairbairn, W., & Meusburger, C. (2011). q-Deformation of Lorentzian spin foam models. In Proceedings of the 3rd Quantum Gravity and Quantum Geometry School (pp. PoS (QGQGS 2011)017). Zakopane, PL.
Meusburger, C., & Schönfeld, T. (2011). Gauge fixing in (2+1)-gravity with vanishing cosmological constant. In Proceedings of the Corfu Summer Institute 2011. Corfu, GR.
Meusburger, C., & Schönfeld, T. (2011). Gauge fixing in (2+1)-gravity: Dirac bracket and spacetime geometry. Classical and Quantum Gravity, 28(12). https://dx.doi.org/10.1088/0264-9381/28/12/125008
Meusburger, C. (2011). Geometry and observables in (2+1)-gravity. General Relativity and Gravitation, 43(9), 2409-2420. https://dx.doi.org/10.1007/s10714-010-0981-9
Ballestreros, A., Herranz, F.J., & Meusburger, C. (2010). Three-dimensional gravity and Drinfel'd doubles: Spacetimes and symmetries from quantum deformations. Physics Letters B, 687, 375-381. https://dx.doi.org/10.1016/j.physletb.2010.03.043
Meusburger, C., & Noui, K. (2010). Combinatorial quantisation of the Euclidean torus universe. Nuclear Physics B, 841(3), 463-505. https://dx.doi.org/10.1016/j.nuclphysb.2010.08.014

Last updated on 2019-11-07 at 23:51