Chair of Applied Dynamics

Address:
Immerwahrstraße 1
91058 Erlangen


Research Fields

biomechanics
motion capturing
multibody dynamics and robotics
structure preserving simulation and optimal control


Related Project(s)

Go to first page Go to previous page 1 of 2 Go to next page Go to last page

(Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik (FRASCAL)):
GRK2423 - P2: Teilprojekt P2 - Atomistics of Crack-Heterogeneity Interactions
Prof. Dr.-Ing. Erik Bitzek; Prof. Dr.-Ing. Sigrid Leyendecker
(02/01/2019 - 30/06/2023)


(Fracture across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics (FRASCAL)):
GRK2423 - P9: Teilprojekt P9 - Adaptive Dynamic Fracture Simulation
Prof. Dr.-Ing. Sigrid Leyendecker; Prof. Dr. Thorsten Pöschel
(02/01/2019 - 30/06/2023)


(A dynamic manikin with fiber-based modeling of skeletal musculature):
DYMARA: Muscle paths in the biomechanical simulation of human movement and MBS integration
Prof. Dr.-Ing. Sigrid Leyendecker
(01/12/2016 - 30/11/2019)


Etablierung eines Herzunterstützungssystems basierend auf einer dem Herzbeutel nachgebildeten kontraktilen Membran
(Establishment of a heart support system as a contractile membrane based on the pericardium)
Prof. Dr.-Ing. Sigrid Leyendecker
(01/05/2016 - 31/12/2018)


(SPP 1886: Polymorphic uncertainty modelling for the numerical design of structures):
Dynamic analysis of prosthetic structures with polymorphic uncertainty
Prof. Dr.-Ing. Sigrid Leyendecker
(01/01/2016 - 31/12/2019)



Publications (Download BibTeX)

Go to first page Go to previous page 2 of 11 Go to next page Go to last page

Penner, J., & Leyendecker, S. (2018). Multi-obstacle muscle wrapping based on a discrete variational principle. In Proceedings of the The 20th European Conference on Mathematics for Industry. Budapest, HU.
Leyendecker, S. (2018). Ein dynamisches Manikin mit faserbasierter Modellierung der Skelettmuskulatur.
Bentaleb, T., & Garulli, A. (2018). Model-Based Control Techniques for Turbomachinery. LAP LAMBERT Academic Publishing.
Penner, J., & Leyendecker, S. (2018). Optimization based muscle wrapping in biomechanical multibody simulations. In Proceedings of the GAMM Annual Meeting. München, DE.
Björkenstam, S., Carlson, J.S., Linn, J., Leyendecker, S., & Lennartson, B. (2018). Inverse Dynamics for Discrete Geometric Mechanics of Multibody Systems with Application to Direct Optimal Control. Journal of Computational and Nonlinear Dynamics.
Martonova, D. (2018). Modellierung von Wachstumsprozessen unter dem Einfluss von elastischen Spannungen mit hyperelastischen Energiedichten (Master thesis).
Phutane, U., Roller, M., & Leyendecker, S. (2018). Optimal control simulations of two finger grasping. In Proceedings of the GAMM Annual Meeting. München, DE.
Leyendecker, S. (2018). Optimal control of human motion - biological and artificial muscles.
Budday, D., Leyendecker, S., & van den Bedem, H. (2018). Bridging protein rigidity theory and normal modes using kino-geometric analysis. In Proceedings of the GAMM Annual Meeting. München, DE.
Eisentraudt, M., & Leyendecker, S. (2018). Fuzzy uncertainty in forward dynamics simulation using variational integrators. In Proceedings of the GAMM Annual Meeting. München, DE.
Duong, M.T., Wenger, T., Herrnböck, L., Ach, T., Holz, D., Kreipp, A.,... Leyendecker, S. (2017). Modelling cardiac mechanics and electrophysiology of a rat left ventricle: A case study. In Proceedings of the International Conference on Biomedical Technology. Hannover, DE.
Schlögl, T., & Leyendecker, S. (2017). A polarisation based approach to model the strain dependent permittivity of dielectric elastomers. Sensors and Actuators A-Physical, 267, 156 - 163. https://dx.doi.org/10.1016/j.sna.2017.09.048
Budday, D., Fonseca, R., Leyendecker, S., & van den Bedem, H. (2017). Frustration-guided motion planning reveals conformational transitions in proteins. Proteins-Structure Function and Bioinformatics, 85(10), 1795-1807. https://dx.doi.org/10.1002/prot.25333
Wenger, T., Ober-Blöbaum, S., & Leyendecker, S. (2017). Higher order variational integrators for multirate and holonomically constrained systems. In Proceedings of the International Conference on Scientific Computation and Differential Equations (SciCADE). Bath, GB.
Gail, T., Ober-Blöbaum, S., & Leyendecker, S. (2017). Variational multirate integration in discrete mechanics and optimal control. In ECCOMAS Thematic Conference on Multibody Dynamics. Prag, CZ.
Phutane, U., Roller, M., Björkenstam, S., Linn, J., & Leyendecker, S. (2017). Kinematic validation of a human thumb model. In ECCOMAS Thematic Conference on Multibody Dynamics. Prag, CZ.
Roller, M., Björkenstam, S., Linn, J., & Leyendecker, S. (2017). Optimal control of a biomechanical multibody model for the dynamic simulation of working tasks. In ECCOMAS Thematic Conference on Multibody Dynamics. Prag, CZ.
Phutane, U., Roller, M., Björkenstam, S., & Leyendecker, S. (2017). Investigating human thumb models via their range of motion volumes. In Proceedings of the GAMM Annual Meeting. Weimar.
Leyendecker, S. (2017). Optimal control of human motion biological and artificial muscles. In Proceedings of the Workshop Computermodellierung von Wirbelsäule und Muskulatur. Koblenz, DE.
Glaas, D., & Leyendecker, S. (2017). Variational integrator for constrained mechanical systems with pulsed disturbances and optimal feedback control. In Proceedings of the GAMM Annual Meeting. Weimar, DE.


Publications in addition (Download BibTeX)

Go to first page Go to previous page 1 of 4 Go to next page Go to last page

Phutane, U. (2015). On the comparison of different muscle model dynamics using variational integrators (Master thesis).
Jung, P., Leyendecker, S., Linn, J., & Ortiz, M. (2011). A discrete mechanics approach to Cosserat rod theory - Part I: static equilibria. International Journal For Numerical Methods in Engineering, Vol. 85, 31-60. https://dx.doi.org/10.1002/nme.2950
Leyendecker, S. (2011). On optimal control simulations for mechanical systems (Habilitation).
Ober-Blöbaum, S., & Leyendecker, S. (2010). A Variational Approach to Multirate Integration. Mexico City, MX.
Maas, R., Siebert, T., & Leyendecker, S. (2010). Structure preserving simulation of human finger movements. Freudenstadt-Lauterbad, DE.
Leyendecker, S., & Maas, R. (2010). Über diskrete Mechanik und Optimalsteuerung menschlicher Fingerbewegungen. Erlangen, DE.
Ober-Blöbaum, S., & Leyendecker, S. (2010). A variational approach to multirate integration. Paris, FR.
Kanso, E., & Leyendecker, S. (2010). Optimal locomotion of a submerged Cosserat beam. Paris, FR.
Hartmann, C., & Leyendecker, S. (2010). Event-driven molecular dynamics and nonsmooth integration. Paris, FR.
Maas, R., & Leyendecker, S. (2010). Structure preserving optimal control simulation of index finger dynamics. In Proceedings of The First Joint International Conference on Multibody System Dynamics (pp. DVD). Lappeenranta, FI.
Leyendecker, S., & Maas, R. (2010). Structure preserving simulation of optimal index finger trajectories during grasping. In PAMM (pp. 83-84). Karlsruhe, Germany, DE.
Leyendecker, S., Lucas, L.J., Owhadi, H., & Ortiz, M. (2010). Certification with optimal control strategies. In PAMM (pp. 621-622). Karlsruhe, Germany, DE.
Leyendecker, S. (2010). Optimal control of multibody dynamics with uncertainties. München, DE.
Leyendecker, S. (2010). Structure preserving methods in computational multibody dynamics and optimal control. Kaiserslautern, DE.
Leyendecker, S., Lucas, L.J., Owhadi, H., & Ortiz, M. (2010). Optimal control strategies for robust certification. Journal of Computational and Nonlinear Dynamics, Volume 5(Number 031008), 031008. https://dx.doi.org/10.1115/1.4001375
Lang, H., & Linn, J. (2009). A multibody system type modelling approach to geometrically exact rods using geometric finite differences. Lissabon, PT.
Kanso, E., & Leyendecker, S. (2009). Locomotion of a submerged Cosserat beam. In Proceedings of the 7th International Conference on Multibody Systems, Nonlinear Dynamics, and Control. (pp. DVD, 10 Seiten). San Diego, california, US.
Leyendecker, S. (2009). Discrete mechanics in space-time integration and optimal control. Göttingen, DE.
Leyendecker, S. (2009). Variational integrators in contact problems. Berlin, DE.
Schmidt, B., Leyendecker, S., & Ortiz, M. (2009). Gamma-convergence of variational integrators for constrained systems. Journal of Nonlinear Science, 19(19), 1432-1467. https://dx.doi.org/10.1007/s00332-008-9030-1

Last updated on 2019-24-04 at 10:16

Share link