Chair of Applied Dynamics

Address:
Immerwahrstraße 1
91058 Erlangen


Research Fields

biomechanics
motion capturing
multibody dynamics and robotics
structure preserving simulation and optimal control


Related Project(s)

Go to first page Go to previous page 2 of 2 Go to next page Go to last page

MKS-Menschenmodelle: Optimal control of biomechanical MBS-Digital Human Models for simulation in the virtual assembly planning
Prof. Dr.-Ing. Sigrid Leyendecker
(01/11/2015 - 31/10/2018)


Protein flexibility and conformational ensembles from kino-geometric modeling, sampling and motion planning.
Prof. Dr.-Ing. Sigrid Leyendecker
(01/06/2014)


(bionicum research):
Development of artificial muscles as actors and sensors on the basis of dielectric elastomers
Prof. Dr.-Ing. Jörg Franke; Prof. Dr.-Ing. Sigrid Leyendecker
(01/10/2012 - 31/03/2018)


Space time discretization for flexible multibody systems and multisymplectic variational integrators
Prof. Dr.-Ing. Sigrid Leyendecker
(01/10/2011)



Publications (Download BibTeX)

Go to first page Go to previous page 10 of 11 Go to next page Go to last page

Kosmas, O. (2011). Charged particle in an electromagnetic field using variational integrators, International Conference of Numerical Analysis and Applied Mathematics. In AIP Conference Proceedings (pp. 1927-1931). Chalkidiki, Griechenland, GR.
Leyendecker, S., & Ober-Blöbaum, S. (2011). Variational multirate integration of constrained dynamics. In Proceedings of the GAMM. Graz, AT.
Maas, R., Siebert, T., & Leyendecker, S. (2011). Structure preserving simulation of muscle actuated movements. In Proceedings of the GAMM. Graz, AT.
Leitz, T. (2011). Ein numerisches Verfahren zur Berechnung des elastohydrodynamischen Kontakts rauer Oberflächen (Diploma thesis).
Leyendecker, S., & Ober-Blöbaum, S. (2011). A variational approach to multirate integration for constrained systems. In Proceedings of the Applied Dynamics and Geometric Mechanics workshop. Oberwolfach, DE.
Lang, H., Linn, J., & Arnold, M. (2011). Multibody dynamics simulation of geometrically exact Cosserat rods. Multibody System Dynamics, 25, 285 - 312.
Ober-Blöbaum, S., & Leyendecker, S. (2011). Variational integration of constrained dynamics on different time scales. Poster presentation at International Conference on Simulation Technology, Stuttgart, DE.
Koch, M., & Leyendecker, S. (2011). Structure preserving simulation of compass gait and monopedal jumping. In Proceedings of the Multibody Dynamics 2011 (pp. 1-19). Brüssel, BE.
Lang, H. (2010). Comparison of quaternionic and rotation-free null space formalisms for multibody dynamics.
Herrmanns, O., Stephan, T., Lang, H., & Linn, J. (2010). Optimale Pfadplanung und interaktive Simulation flexibler Kabel und Schläuche. In Proceedings of the 6. ATZproduktion Fachtagung - Zukunft Automobilmontage. Wolfsburg, DE.
Kosmas, O., & Vlachos, D.S. (2010). Phase-fitted discrete Lagrangian integrators. Computer Physics Communications, 181(3), 562-568. https://dx.doi.org/10.1016/j.cpc.2009.11.005
Koch, M., & Leyendecker, S. (2010). Energy momentum consistent force formulation for the optimal control of multibody systems. In PAMM (pp. 43-44). Karlsruhe, Germany, DE.
Lang, H., & Linn, J. (2009). A multibody system type approach to geometrically exact rods using geometric finite differences. In Proceedings of the EMSC Euromech. Lissabon, ES.
Lang, H., & Linn, J. (2009). Lagrangian field theory in space and time for geometrically exact Cosserat rods.
Ringkamp, M. (2009). Fortsetzungsalgorithmen für hochdimensionale Mehrzieloptimierungsprobleme (Diploma thesis).
Lang, H., Linn, J., & Arnold, M. (2009). Multibody dynamics simulation of geometrically exact Cosserat rods. In Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics. Warschau, PL.
Lang, H., & Linn, J. (2009). A second order semi-discrete Cosserat rod model suitable for dynamic simulations in real time. In Proceedings of the 7th International Conference on Numerical Analysis and Applied Mathematics (ICNAAM). Rethymno, GR.
Lang, H., Dreßler, K., Pinnau, R., & Speckert, M. (2009). Comparison of the solutions of the elastic and elastoplastic boundary value problems. Zeitschrift für Angewandte Mathematik und Physik, 61, 635 - 653.
Lang, H., Dreßler, K., Pinnau, R., & Speckert, M. (2009). Notes on Lipschitz estimates for the stop and play operator in plasticity. Applied Mathematics Letters, 22, 623 - 627.
Lang, H., & Dreßler, K. (2008). An improved multiaxial stress-strain correction model for elastic FE postprocessing. In Proceedings of the 6th International Conference on Low Cycle Fatigue. Berlin, DE.


Publications in addition (Download BibTeX)

Go to first page Go to previous page 1 of 4 Go to next page Go to last page

Duong, M.T., Holz, D., Alkassar, M., Dittrich, S., & Leyendecker, S. (2019). Interaction of the mechano-electrical feedback with passive mechanical models on a 3D rat left ventricle: a computational study. Frontiers in Physiology, 10, 10-41. https://dx.doi.org/10.3389/fphys.2019.01041
Phutane, U. (2015). On the comparison of different muscle model dynamics using variational integrators (Master thesis).
Jung, P., Leyendecker, S., Linn, J., & Ortiz, M. (2011). A discrete mechanics approach to Cosserat rod theory - Part I: static equilibria. International Journal For Numerical Methods in Engineering, Vol. 85, 31-60. https://dx.doi.org/10.1002/nme.2950
Leyendecker, S. (2011). On optimal control simulations for mechanical systems (Habilitation).
Maas, R., Siebert, T., & Leyendecker, S. (2010). Structure preserving simulation of human finger movements. In Proceedings of the 3rd GAMM Seminar on Continuum Biomechanics. Freudenstadt-Lauterbad, DE.
Ober-Blöbaum, S., & Leyendecker, S. (2010). A Variational Approach to Multirate Integration. In Proceedings of the First International Workshop on Set Oriented Numerics. Mexico City, MX.
Leyendecker, S., & Maas, R. (2010). Über diskrete Mechanik und Optimalsteuerung menschlicher Fingerbewegungen. Erlangen, DE.
Ober-Blöbaum, S., & Leyendecker, S. (2010). A variational approach to multirate integration. In Proceedings of the IV European Conference on Computational Mechanics Solids, , Structures and Coupled Problems in Engineering, ECCM. Paris, FR.
Maas, R., & Leyendecker, S. (2010). Structure preserving optimal control simulation of index finger dynamics. In Proceedings of The First Joint International Conference on Multibody System Dynamics (pp. DVD). Lappeenranta, FI.
Kanso, E., & Leyendecker, S. (2010). Optimal locomotion of a submerged Cosserat beam. Paris, FR.
Hartmann, C., & Leyendecker, S. (2010). Event-driven molecular dynamics and nonsmooth integration. Paris, FR.
Leyendecker, S., & Maas, R. (2010). Structure preserving simulation of optimal index finger trajectories during grasping. In PAMM (pp. 83-84). Karlsruhe, Germany, DE.
Leyendecker, S., Lucas, L.J., Owhadi, H., & Ortiz, M. (2010). Certification with optimal control strategies. In PAMM (pp. 621-622). Karlsruhe, Germany, DE.
Leyendecker, S. (2010). Optimal control of multibody dynamics with uncertainties. München, DE.
Leyendecker, S. (2010). Structure preserving methods in computational multibody dynamics and optimal control. Kaiserslautern, DE.
Leyendecker, S., Lucas, L.J., Owhadi, H., & Ortiz, M. (2010). Optimal control strategies for robust certification. Journal of Computational and Nonlinear Dynamics, Volume 5(Number 031008), 031008. https://dx.doi.org/10.1115/1.4001375
Lang, H., & Linn, J. (2009). A multibody system type modelling approach to geometrically exact rods using geometric finite differences. In Proceedings of the ESMC EuroMech. Lissabon, PT.
Kanso, E., & Leyendecker, S. (2009). Locomotion of a submerged Cosserat beam. In Proceedings of the 7th International Conference on Multibody Systems, Nonlinear Dynamics, and Control. (pp. DVD, 10 Seiten). San Diego, california, US.
Leyendecker, S. (2009). Discrete mechanics in space-time integration and optimal control. Göttingen, DE.
Leyendecker, S. (2009). Variational integrators in contact problems. Berlin, DE.

Last updated on 2019-24-04 at 10:16