Chair of Applied Dynamics

Address:
Immerwahrstraße 1
91058 Erlangen


Research Fields

biomechanics
motion capturing
multibody dynamics and robotics
structure preserving simulation and optimal control


Related Project(s)

Go to first page Go to previous page 2 of 2 Go to next page Go to last page

MKS-Menschenmodelle: Optimal control of biomechanical MBS-Digital Human Models for simulation in the virtual assembly planning
Prof. Dr.-Ing. Sigrid Leyendecker
(01/11/2015 - 31/10/2018)


Protein flexibility and conformational ensembles from kino-geometric modeling, sampling and motion planning.
Prof. Dr.-Ing. Sigrid Leyendecker
(01/06/2014)


(bionicum research):
Development of artificial muscles as actors and sensors on the basis of dielectric elastomers
Prof. Dr.-Ing. Jörg Franke; Prof. Dr.-Ing. Sigrid Leyendecker
(01/10/2012 - 31/03/2018)


Space time discretization for flexible multibody systems and multisymplectic variational integrators
Prof. Dr.-Ing. Sigrid Leyendecker
(01/10/2011)



Publications (Download BibTeX)

Go to first page Go to previous page 10 of 10 Go to next page Go to last page

Kosmas, O., & Vlachos, D.S. (2010). Phase-fitted discrete Lagrangian integrators. Computer Physics Communications, 181(3), 562-568. https://dx.doi.org/10.1016/j.cpc.2009.11.005
Ringkamp, M. (2009). Fortsetzungsalgorithmen für hochdimensionale Mehrzieloptimierungsprobleme (Diploma thesis).
Kosmas, O., Vlachos, D.S., & Simos, T.E. (2008). A new multistep Integrator based on Discrete Lagrangian Formulation. In AIP Conference Proceedings (pp. 1037-1039). Kos, GR.
Lang, H. (2007). The difference of the solutions of the elastic and elastoplastic boundary value problem and an approach to multiaxial stress-strain correction (Dissertation).
Kosmas, O., Vlachos, D.S., & Simos, T.E. (2007). Obstacle Bypassing in Optimal Ship Routing Using Simulated Annealing. In AIP Conference Proceedings (pp. 79-83). Athens, GR.
Kosmas, O., Vlachos, D.S., & Simos, T.E. (2007). Optimized Derivative Kernels for Gamma Ray Spectroscopy. In AIP Conference Proceedings (pp. 1396-1399). Corfu, GR: American Institute of Physics.
Kosmas, O., Vlachos, D.S., & Simos, T.E. (2007). Discrete Algorithms for Optimization in Ship Routing Problems. In AIP Conference Proceedings (pp. 322-325). Corfu, GR: American Institute of Physics.
Lang, H. (2007). A condition that a continuously deformed, simply connected body does not penetrate itself.
Kosmas, O., Vlachos, D.S., & Simos, T.E. (2007). A Discrete Lagrangian Algorithm for Optimal Routing Problems. In AIP Conference Proceedings (pp. 75-79). Athens, GR.
Lang, H. (2002). Die Fläche von Costa, Hoffman und Meeks (Diploma thesis).
Lang, H. (2002). Die Fläche von Costa, Hoffman und Meeks: Eine vollständige, in den IR³ eingebettete Minimalfläche von Geschlecht Eins, mit drei Enden und endlicher Gaußscher Totalkrümmung -12 pi (Diploma thesis).


Publications in addition (Download BibTeX)

Go to first page Go to previous page 1 of 4 Go to next page Go to last page

Phutane, U. (2015). On the comparison of different muscle model dynamics using variational integrators (Master thesis).
Jung, P., Leyendecker, S., Linn, J., & Ortiz, M. (2011). A discrete mechanics approach to Cosserat rod theory - Part I: static equilibria. International Journal For Numerical Methods in Engineering, Vol. 85, 31-60. https://dx.doi.org/10.1002/nme.2950
Leyendecker, S. (2011). On optimal control simulations for mechanical systems (Habilitation).
Ober-Blöbaum, S., & Leyendecker, S. (2010). A Variational Approach to Multirate Integration. Mexico City, MX.
Maas, R., Siebert, T., & Leyendecker, S. (2010). Structure preserving simulation of human finger movements. Freudenstadt-Lauterbad, DE.
Leyendecker, S., & Maas, R. (2010). Über diskrete Mechanik und Optimalsteuerung menschlicher Fingerbewegungen. Erlangen, DE.
Ober-Blöbaum, S., & Leyendecker, S. (2010). A variational approach to multirate integration. Paris, FR.
Kanso, E., & Leyendecker, S. (2010). Optimal locomotion of a submerged Cosserat beam. Paris, FR.
Hartmann, C., & Leyendecker, S. (2010). Event-driven molecular dynamics and nonsmooth integration. Paris, FR.
Maas, R., & Leyendecker, S. (2010). Structure preserving optimal control simulation of index finger dynamics. In Proceedings of The First Joint International Conference on Multibody System Dynamics (pp. DVD). Lappeenranta, FI.
Leyendecker, S., & Maas, R. (2010). Structure preserving simulation of optimal index finger trajectories during grasping. In PAMM (pp. 83-84). Karlsruhe, Germany, DE.
Leyendecker, S., Lucas, L.J., Owhadi, H., & Ortiz, M. (2010). Certification with optimal control strategies. In PAMM (pp. 621-622). Karlsruhe, Germany, DE.
Leyendecker, S. (2010). Optimal control of multibody dynamics with uncertainties. München, DE.
Leyendecker, S. (2010). Structure preserving methods in computational multibody dynamics and optimal control. Kaiserslautern, DE.
Leyendecker, S., Lucas, L.J., Owhadi, H., & Ortiz, M. (2010). Optimal control strategies for robust certification. Journal of Computational and Nonlinear Dynamics, Volume 5(Number 031008), 031008. https://dx.doi.org/10.1115/1.4001375
Lang, H., & Linn, J. (2009). A multibody system type modelling approach to geometrically exact rods using geometric finite differences. Lissabon, PT.
Kanso, E., & Leyendecker, S. (2009). Locomotion of a submerged Cosserat beam. In Proceedings of the 7th International Conference on Multibody Systems, Nonlinear Dynamics, and Control. (pp. DVD, 10 Seiten). San Diego, california, US.
Leyendecker, S. (2009). Discrete mechanics in space-time integration and optimal control. Göttingen, DE.
Leyendecker, S. (2009). Variational integrators in contact problems. Berlin, DE.
Schmidt, B., Leyendecker, S., & Ortiz, M. (2009). Gamma-convergence of variational integrators for constrained systems. Journal of Nonlinear Science, 19(19), 1432-1467. https://dx.doi.org/10.1007/s00332-008-9030-1

Last updated on 2019-24-04 at 10:16