Chair of Applied Dynamics

Address:
Immerwahrstraße 1
91058 Erlangen


Research Fields

biomechanics
motion capturing
multibody dynamics and robotics
structure preserving simulation and optimal control


Related Project(s)

Go to first page Go to previous page 1 of 2 Go to next page Go to last page

(Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik (FRASCAL)):
GRK2423 - P2: Teilprojekt P2 - Atomistics of Crack-Heterogeneity Interactions
Prof. Dr.-Ing. Erik Bitzek; Prof. Dr.-Ing. Sigrid Leyendecker
(02/01/2019 - 30/06/2023)


(Fracture across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics (FRASCAL)):
GRK2423 - P9: Teilprojekt P9 - Adaptive Dynamic Fracture Simulation
Prof. Dr.-Ing. Sigrid Leyendecker; Prof. Dr. Thorsten Pöschel
(02/01/2019 - 30/06/2023)


(A dynamic manikin with fiber-based modeling of skeletal musculature):
DYMARA: Muscle paths in the biomechanical simulation of human movement and MBS involvement
Prof. Dr.-Ing. Sigrid Leyendecker
(01/12/2016 - 30/11/2019)


Etablierung eines Herzunterstützungssystems basierend auf einer dem Herzbeutel nachgebildeten kontraktilen Membran
(Establishment of a heart support system as a contractile membrane based on the pericardium)
Prof. Dr.-Ing. Sigrid Leyendecker
(01/05/2016 - 31/12/2018)


(SPP 1886: Polymorphic uncertainty modelling for the numerical design of structures):
Dynamic analysis of prosthetic structures with polymorphic uncertainty
Prof. Dr.-Ing. Sigrid Leyendecker
(01/01/2016 - 31/12/2019)



Publications (Download BibTeX)

Go to first page Go to previous page 10 of 10 Go to next page Go to last page

Lang, H. (2007). A condition that a continuously deformed, simply connected body does not penetrate itself.
Lang, H. (2002). Die Fläche von Costa, Hoffman und Meeks (Diploma thesis).
Lang, H. (2002). Die Fläche von Costa, Hoffman und Meeks: Eine vollständige, in den IR³ eingebettete Minimalfläche von Geschlecht Eins, mit drei Enden und endlicher Gaußscher Totalkrümmung -12 pi (Diploma thesis).


Publications in addition (Download BibTeX)

Go to first page Go to previous page 1 of 4 Go to next page Go to last page

Jung, P., Leyendecker, S., Linn, J., & Ortiz, M. (2011). A discrete mechanics approach to Cosserat rod theory - Part I: static equilibria. International Journal For Numerical Methods in Engineering, Vol. 85, 31-60. https://dx.doi.org/10.1002/nme.2950
Leyendecker, S. (2011). On optimal control simulations for mechanical systems (Habilitation).
Maas, R., Siebert, T., & Leyendecker, S. (2010). Structure preserving simulation of human finger movements. Freudenstadt-Lauterbad, DE.
Ober-Blöbaum, S., & Leyendecker, S. (2010). A Variational Approach to Multirate Integration. Mexico City, MX.
Leyendecker, S., & Maas, R. (2010). Über diskrete Mechanik und Optimalsteuerung menschlicher Fingerbewegungen. Erlangen, DE.
Kanso, E., & Leyendecker, S. (2010). Optimal locomotion of a submerged Cosserat beam. Paris, FR.
Ober-Blöbaum, S., & Leyendecker, S. (2010). A variational approach to multirate integration. Paris, FR.
Maas, R., & Leyendecker, S. (2010). Structure preserving optimal control simulation of index finger dynamics. In Proceedings of The First Joint International Conference on Multibody System Dynamics (pp. DVD). Lappeenranta, FI.
Hartmann, C., & Leyendecker, S. (2010). Event-driven molecular dynamics and nonsmooth integration. Paris, FR.
Leyendecker, S. (2010). Optimal control of multibody dynamics with uncertainties. München, DE.
Leyendecker, S., Lucas, L.J., Owhadi, H., & Ortiz, M. (2010). Certification with optimal control strategies. In PAMM (pp. 621-622). Karlsruhe, Germany, DE.
Leyendecker, S., & Maas, R. (2010). Structure preserving simulation of optimal index finger trajectories during grasping. In PAMM (pp. 83-84). Karlsruhe, Germany, DE.
Leyendecker, S. (2010). Structure preserving methods in computational multibody dynamics and optimal control. Kaiserslautern, DE.
Leyendecker, S., Lucas, L.J., Owhadi, H., & Ortiz, M. (2010). Optimal control strategies for robust certification. Journal of Computational and Nonlinear Dynamics, Volume 5(Number 031008), 031008. https://dx.doi.org/10.1115/1.4001375
Lang, H., & Linn, J. (2009). A multibody system type modelling approach to geometrically exact rods using geometric finite differences. Lissabon, PT.
Kanso, E., & Leyendecker, S. (2009). Locomotion of a submerged Cosserat beam. In Proceedings of the 7th International Conference on Multibody Systems, Nonlinear Dynamics, and Control. (pp. DVD, 10 Seiten). San Diego, california, US.
Leyendecker, S. (2009). Discrete mechanics in space-time integration and optimal control. Göttingen, DE.
Leyendecker, S. (2009). Variational integrators in contact problems. Berlin, DE.
Leyendecker, S., Ober-Blöbaum, S., Marsden, J.E., & Ortiz, M. (2009). Discrete mechanics and optimal control for constrained systems. Optimal Control Applications & Methods, 31(Issue 6), 505-528. https://dx.doi.org/10.1002/oca.912
Leyendecker, S. (2009). Structure preserving methods in computational multibody dynamics and optimal control. Erlangen, DE.

Last updated on 2019-08-03 at 10:29