Chair of Applied Dynamics

Address:
Immerwahrstraße 1
91058 Erlangen


Research Fields

biomechanics
motion capturing
multibody dynamics and robotics
structure preserving simulation and optimal control


Related Project(s)

Go to first page Go to previous page 2 of 2 Go to next page Go to last page

MKS-Menschenmodelle: Optimal control of biomechanical MBS-Digital Human Models for simulation in the virtual assembly planning
Prof. Dr.-Ing. Sigrid Leyendecker
(01/11/2015 - 31/10/2018)


Protein flexibility and conformational ensembles from kino-geometric modeling, sampling and motion planning.
Prof. Dr.-Ing. Sigrid Leyendecker
(01/06/2014)


(bionicum research):
Development of artificial muscles as actors and sensors on the basis of dielectric elastomers
Prof. Dr.-Ing. Jörg Franke; Prof. Dr.-Ing. Sigrid Leyendecker
(01/10/2012 - 31/03/2018)


Space time discretization for flexible multibody systems and multisymplectic variational integrators
Prof. Dr.-Ing. Sigrid Leyendecker
(01/10/2011)



Publications (Download BibTeX)

Go to first page Go to previous page 1 of 10 Go to next page Go to last page

Eisentraudt, M., & Leyendecker, S. (2019). Epistemic uncertainty in optimal control simulation. Mechanical Systems and Signal Processing, 121, 876-889. https://dx.doi.org/10.1016/j.ymssp.2018.12.001
Penner, J., & Leyendecker, S. (2019). Biomechanical simulations with dynamic muscle paths on NURBS surfaces. In Proceedings of the GAMM Annual Meeting. Vienna, AT.
Budday, D. (2019). High-Dimensional Robotics at the Nanoscale — Kino-Geometric Modeling of Proteins and Molecular Mechanisms (Dissertation).
Scheiterer, E.S. (2019). Simulation of a prosthetic foot modelled by a predeformed geometrically exact beam (Master thesis).
Wenger, T., Ober-Blöbaum, S., & Leyendecker, S. (2018). Numerical properties of mixed order variational integrators applied to dynamical multirate systems. Halle, DE.
Glaas, D., & Leyendecker, S. (2018). Variational integrator based optimal feedback control for constrained mechanical systems. ZAMM - Zeitschrift für angewandte Mathematik und Mechanik. https://dx.doi.org/10.1002/zamm.201700221
Duong, M.T., Ach, T., Alkassar, M., Dittrich, S., & Leyendecker, S. (2018). Numerical simulation of cardiac muscles in a rat biventricular model. Glasgow, GB.
Eisentraudt, M., & Leyendecker, S. (2018). Fuzzy uncertainty in forward dynamics simulation. Mechanical Systems and Signal Processing, 126, 590-608. https://dx.doi.org/10.1016/j.ymssp.2019.02.036
Leyendecker, S., & Kosmas, O. (2018). Variational integrators for orbital problems using frequency estimation. Advances in Computational Mathematics, 1-21. https://dx.doi.org/10.1007/s10444-018-9603-y
Bentaleb, T., Pham, M.T., Eberard, D., & Marquis-Favre, W. (2018). Bond graph modeling and analysis of intermediary cooling system of a nuclear power plants. Lyon, FR.
Schlögl, T. (2018). Modelling, simulation and optimal control of dielectric elastomer actuated systems (Dissertation).
Werner, A., Henze, B., Keppler, M., Loeffl, F., Leyendecker, S., & Ott, C. (2018). Structure preserving Multi-Contact Balance Control for Series-Elastic and Visco-Elastic Humanoid Robots. In 2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) (pp. 1233-1240). Madrid, ES: NEW YORK: IEEE.
Bentaleb, T., & Garulli, A. (2018). Model-Based Control Techniques for Turbomachinery. LAP LAMBERT Academic Publishing.
Penner, J., & Leyendecker, S. (2018). Optimization based muscle wrapping in biomechanical multibody simulations. München, DE.
Duong, M.T., Holz, D., Ach, T., Binnewitt, S.V., Stegmann, H., Dittrich, S.,... Leyendecker, S. (2018). Simulation of cardiac electromechanics of a rat left ventricle. München, DE.
Fonseca, R., Budday, D., & van den Bedem, H. (2018). Collision-free poisson motion planning in ultra high-dimensional molecular conformation spaces. Journal of Computational Chemistry. https://dx.doi.org/10.1002/jcc.25138
Phutane, U., Roller, M., & Leyendecker, S. (2018). Optimal control simulations of two finger grasping. München, DE.
Eisentraudt, M., & Leyendecker, S. (2018). Fuzzy uncertainty in forward dynamics simulation using variational integrators. München, DE.
Leitz, T., & Leyendecker, S. (2018). Galerkin Lie-group variational integrators based on unit quaternion interpolation. Computer Methods in Applied Mechanics and Engineering, 338, 333-361. https://dx.doi.org/10.1016/j.cma.2018.04.022
Budday, D., Leyendecker, S., & van den Bedem, H. (2018). Bridging protein rigidity theory and normal modes using kino-geometric analysis. München, DE.


Publications in addition (Download BibTeX)

Go to first page Go to previous page 2 of 4 Go to next page Go to last page

Leyendecker, S. (2009). Structure preserving methods in computational multibody dynamics and optimal control. Trondheim, NO.
Leyendecker, S. (2009). Structure preserving methods in computational multibody dynamics and optimal control. Erlangen, DE.
Leyendecker, S. (2009). Structure preserving optimal control of three-dimensional compass gait.
Leyendecker, S., Ober-Blöbaum, S., Marsden, J.E., & Ortiz, M. (2009). Discrete mechanics and optimal control for constrained systems. Optimal Control Applications & Methods, 31(Issue 6), 505-528. https://dx.doi.org/10.1002/oca.912
Leyendecker, S., Pekarek, D., & Marsden, J.E. (2009). Optimal control of a three-dimensional compass biped walker. Sun City, ZA.
Leyendecker, S. (2009). Variationsintegratoren in der Optimalsteuerung von Mehrkörperdynamik. Siegen.
Jung, P., Leyendecker, S., Linn, J., & Ortiz, M. (2009). Discrete Lagrangian mechanics and geometrically exact Cosserat rods. In Proceedings of the Multibody Dynamics 2009 (pp. dvd, 14 Seiten). Warsaw, Poland, PL.
Leyendecker, S., Pekarek, D., & Ober-Blöbaum, S. (2008, July). Dynamic optimisation of a three-dimensional walker. Poster presentation at Applied Dynamics and Geometric Mechanics workshop, Oberwolfach, DE.
Leyendecker, S., & Pekarek, D. (2008). Dynamic optimisation of a three-dimensional compass gait biped. Palo Alto, California.
Leyendecker, S., Ober-Blöbaum, S., Marsden, J.E., & Ortiz, M. (2008). Dynamic optimisation of constrained multibody dynamics. Honolulu, Hawaii, US.
Leyendecker, S. (2008). Consistent simulation and optimal control of multibody dynamics. New York, US.
Leyendecker, S. (2008). Structure preserving integration and optimal control of con- strained dynamical systems. Santa Barbara, California, US.
Leyendecker, S. (2008). Discrete mechanics and optimal control of multibody dynamics. Erlangen.
Leyendecker, S., Marsden, J.E., & Ortiz, M. (2008). Variational integrators for constrained dynamical systems. ZAMM - Zeitschrift für angewandte Mathematik und Mechanik, 88(9), 677-708. https://dx.doi.org/10.1002/zamm.200700173
Leyendecker, S. (2008). Two aspects of variational integrators for constrained systems: Gamma-convergence and discrete null space method. Berlin, DE.
Leyendecker, S., Betsch, P., & Steinmann, P. (2008). The Discrete Null Space Method for the Energy Consistent Integration of Constrained Mechanical Systems. Part III: Flexible Multibody Dynamics. Multibody System Dynamics, Volume 19(1-2), 45-72. https://dx.doi.org/10.1007/s11044-007-9056-4
Leyendecker, S., Ortiz, M., & Schmidt, B. (2008). On Gamma-convergence of variational integrators for constrained systems. Venice, IT.
Leyendecker, S. (2008). Structure preserving simulation and optimal control of multibody dynamics. Stuttgart, DE.
Leyendecker, S. (2008). Variational integrators in discrete time and space mechanics. Berlin, DE.
Leyendecker, S. (2007). Mechanical integration and optimal control of constrained multibody dynamics. Pasadena, California, US.

Last updated on 2019-24-04 at 10:16