Chair of Applied Dynamics

Address:
Immerwahrstraße 1
91058 Erlangen


Research Fields

biomechanics
motion capturing
multibody dynamics and robotics
structure preserving simulation and optimal control


Related Project(s)

Go to first page Go to previous page 1 of 2 Go to next page Go to last page

(Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik (FRASCAL)):
GRK2423 - P2: Teilprojekt P2 - Atomistics of Crack-Heterogeneity Interactions
Prof. Dr.-Ing. Erik Bitzek; Prof. Dr.-Ing. Sigrid Leyendecker
(02/01/2019 - 30/06/2023)


(Fracture across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics (FRASCAL)):
GRK2423 - P9: Teilprojekt P9 - Adaptive Dynamic Fracture Simulation
Prof. Dr.-Ing. Sigrid Leyendecker; Prof. Dr. Thorsten Pöschel
(02/01/2019 - 30/06/2023)


(A dynamic manikin with fiber-based modeling of skeletal musculature):
DYMARA: Muscle paths in the biomechanical simulation of human movement and MBS involvement
Prof. Dr.-Ing. Sigrid Leyendecker
(01/12/2016 - 30/11/2019)


Etablierung eines Herzunterstützungssystems basierend auf einer dem Herzbeutel nachgebildeten kontraktilen Membran
(Establishment of a heart support system as a contractile membrane based on the pericardium)
Prof. Dr.-Ing. Sigrid Leyendecker
(01/05/2016 - 31/12/2018)


(SPP 1886: Polymorphic uncertainty modelling for the numerical design of structures):
Dynamic analysis of prosthetic structures with polymorphic uncertainty
Prof. Dr.-Ing. Sigrid Leyendecker
(01/01/2016 - 31/12/2019)



Publications (Download BibTeX)

Go to first page Go to previous page 1 of 10 Go to next page Go to last page

Eisentraudt, M., & Leyendecker, S. (2019). Epistemic uncertainty in optimal control simulation. Mechanical Systems and Signal Processing, 121, 876-889. https://dx.doi.org/10.1016/j.ymssp.2018.12.001
Penner, J., & Leyendecker, S. (2019). Biomechanical simulations with dynamic muscle paths on NURBS surfaces. In Proceedings of the GAMM Annual Meeting. Vienna, AT.
Wenger, T., Ober-Blöbaum, S., & Leyendecker, S. (2018). Numerical properties of mixed order variational integrators applied to dynamical multirate systems. Halle, DE.
Glaas, D., & Leyendecker, S. (2018). Variational integrator based optimal feedback control for constrained mechanical systems. ZAMM - Zeitschrift für angewandte Mathematik und Mechanik. https://dx.doi.org/10.1002/zamm.201700221
Duong, M.T., Ach, T., Alkassar, M., Dittrich, S., & Leyendecker, S. (2018). Numerical simulation of cardiac muscles in a rat biventricular model. Glasgow, GB.
Eisentraudt, M., & Leyendecker, S. (2018). Fuzzy uncertainty in forward dynamics simulation. Mechanical Systems and Signal Processing, 126, 590-608. https://dx.doi.org/10.1016/j.ymssp.2019.02.036
Leyendecker, S., & Kosmas, O. (2018). Variational integrators for orbital problems using frequency estimation. Advances in Computational Mathematics, 1-21. https://dx.doi.org/10.1007/s10444-018-9603-y
Schlögl, T. (2018). Modelling, simulation and optimal control of dielectric elastomer actuated systems (Dissertation).
Bentaleb, T., Pham, M.T., Eberard, D., & Marquis-Favre, W. (2018). Bond graph modeling and analysis of intermediary cooling system of a nuclear power plants. Lyon, FR.
Werner, A., Henze, B., Keppler, M., Loeffl, F., Leyendecker, S., & Ott, C. (2018). Structure preserving Multi-Contact Balance Control for Series-Elastic and Visco-Elastic Humanoid Robots. In 2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) (pp. 1233-1240). Madrid, ES: NEW YORK: IEEE.
Fonseca, R., Budday, D., & van den Bedem, H. (2018). Collision-free poisson motion planning in ultra high-dimensional molecular conformation spaces. Journal of Computational Chemistry. https://dx.doi.org/10.1002/jcc.25138
Budday, D., Leyendecker, S., & van den Bedem, H. (2018). Kinematic Flexibility Analysis: Hydrogen Bonding Patterns Impart a Spatial Hierarchy of Protein Motion. Journal of Chemical Information and Modeling, 58(10), 2108-2122. https://dx.doi.org/10.1021/acs.jcim.8b00267
Leyendecker, S. (2018). Ein dynamisches Manikin mit faserbasierter Modellierung der Skelettmuskulatur.
Bentaleb, T., & Garulli, A. (2018). Model-Based Control Techniques for Turbomachinery. LAP LAMBERT Academic Publishing.
Penner, J., & Leyendecker, S. (2018). Optimization based muscle wrapping in biomechanical multibody simulations. München, DE.
Björkenstam, S., Carlson, J.S., Linn, J., Leyendecker, S., & Lennartson, B. (2018). Inverse Dynamics for Discrete Geometric Mechanics of Multibody Systems with Application to Direct Optimal Control. Journal of Computational and Nonlinear Dynamics.
Penner, J., & Leyendecker, S. (2018). Multi-obstacle muscle wrapping based on a discrete variational principle. Budapest, HU.
Lomakin, K., Pavlenko, T., Sippel, M., Gold, G., Helmreich, K., Ankenbrand, M.,... Franke, A. (2018). Impact of Surface Roughness on 3D printed SLS Horn Antennas. In European Conference on Antennas and Propagation (EUCAP).
Lomakin, K., Pavlenko, T., Sippel, M., Gold, G., Weidner, T., Helmreich, K.,... Franke, J. (2018). 3D Printed Helix Antenna. In European Conference on Antennas and Propagation (EUCAP). London, GB.
Leitz, T., & Leyendecker, S. (2018). Galerkin Lie-group variational integrators based on unit quaternion interpolation. Computer Methods in Applied Mechanics and Engineering, 338, 333-361. https://dx.doi.org/10.1016/j.cma.2018.04.022


Publications in addition (Download BibTeX)

Go to first page Go to previous page 2 of 4 Go to next page Go to last page

Leyendecker, S. (2009). Structure preserving optimal control of three-dimensional compass gait.
Leyendecker, S. (2009). Structure preserving methods in computational multibody dynamics and optimal control. Trondheim, NO.
Schmidt, B., Leyendecker, S., & Ortiz, M. (2009). Gamma-convergence of variational integrators for constrained systems. Journal of Nonlinear Science, 19(19), 1432-1467. https://dx.doi.org/10.1007/s00332-008-9030-1
Leyendecker, S., Pekarek, D., & Marsden, J.E. (2009). Optimal control of a three-dimensional compass biped walker. Sun City, ZA.
Leyendecker, S. (2009). Variationsintegratoren in der Optimalsteuerung von Mehrkörperdynamik. Siegen.
Jung, P., Leyendecker, S., Linn, J., & Ortiz, M. (2009). Discrete Lagrangian mechanics and geometrically exact Cosserat rods. In Proceedings of the Multibody Dynamics 2009 (pp. dvd, 14 Seiten). Warsaw, Poland, PL.
Leyendecker, S., Pekarek, D., & Ober-Blöbaum, S. (2008, July). Dynamic optimisation of a three-dimensional walker. Poster presentation at Applied Dynamics and Geometric Mechanics workshop, Oberwolfach, DE.
Leyendecker, S., & Pekarek, D. (2008). Dynamic optimisation of a three-dimensional compass gait biped. Palo Alto, California.
Leyendecker, S., Ober-Blöbaum, S., Marsden, J.E., & Ortiz, M. (2008). Dynamic optimisation of constrained multibody dynamics. Honolulu, Hawaii, US.
Leyendecker, S. (2008). Consistent simulation and optimal control of multibody dynamics. New York, US.
Leyendecker, S. (2008). Structure preserving integration and optimal control of con- strained dynamical systems. Santa Barbara, California, US.
Leyendecker, S. (2008). Discrete mechanics and optimal control of multibody dynamics. Erlangen.
Leyendecker, S., Marsden, J.E., & Ortiz, M. (2008). Variational integrators for constrained dynamical systems. ZAMM - Zeitschrift für angewandte Mathematik und Mechanik, 88(9), 677-708. https://dx.doi.org/10.1002/zamm.200700173
Leyendecker, S. (2008). Two aspects of variational integrators for constrained systems: Gamma-convergence and discrete null space method. Berlin, DE.
Leyendecker, S., Betsch, P., & Steinmann, P. (2008). The Discrete Null Space Method for the Energy Consistent Integration of Constrained Mechanical Systems. Part III: Flexible Multibody Dynamics. Multibody System Dynamics, Volume 19(1-2), 45-72. https://dx.doi.org/10.1007/s11044-007-9056-4
Leyendecker, S., Ortiz, M., & Schmidt, B. (2008). On Gamma-convergence of variational integrators for constrained systems. Venice, IT.
Leyendecker, S. (2008). Structure preserving simulation and optimal control of multibody dynamics. Stuttgart, DE.
Leyendecker, S. (2008). Variational integrators in discrete time and space mechanics. Berlin, DE.
Leyendecker, S. (2007). Mechanical integration and optimal control of constrained multibody dynamics. Pasadena, California, US.
Leyendecker, S., Marsden, J.E., & Ortiz, M. (2007). On the relation of topology and analysis in discrete mechanics. Zürich, CH.

Last updated on 2019-08-03 at 10:29