Chair of Applied Dynamics

Immerwahrstraße 1
91058 Erlangen

Research Fields

motion capturing
multibody dynamics and robotics
structure preserving simulation and optimal control

Related Project(s)

Go to first page Go to previous page 1 of 2 Go to next page Go to last page

(Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik (FRASCAL)):
GRK2423 - P2: Teilprojekt P2 - Atomistics of Crack-Heterogeneity Interactions
Prof. Dr.-Ing. Erik Bitzek; Prof. Dr.-Ing. Sigrid Leyendecker
(02/01/2019 - 30/06/2023)

(Fracture across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics (FRASCAL)):
GRK2423 - P9: Teilprojekt P9 - Adaptive Dynamic Fracture Simulation
Prof. Dr.-Ing. Sigrid Leyendecker; Prof. Dr. Thorsten Pöschel
(02/01/2019 - 30/06/2023)

(A dynamic manikin with fiber-based modeling of skeletal musculature):
DYMARA: Muscle paths in the biomechanical simulation of human movement and MBS involvement
Prof. Dr.-Ing. Sigrid Leyendecker
(01/12/2016 - 30/11/2019)

Etablierung eines Herzunterstützungssystems basierend auf einer dem Herzbeutel nachgebildeten kontraktilen Membran
(Establishment of a heart support system as a contractile membrane based on the pericardium)
Prof. Dr.-Ing. Sigrid Leyendecker
(01/05/2016 - 31/12/2018)

(SPP 1886: Polymorphic uncertainty modelling for the numerical design of structures):
Dynamic analysis of prosthetic structures with polymorphic uncertainty
Prof. Dr.-Ing. Sigrid Leyendecker
(01/01/2016 - 31/12/2019)

Publications (Download BibTeX)

Go to first page Go to previous page 1 of 10 Go to next page Go to last page

Eisentraudt, M., & Leyendecker, S. (2019). Epistemic uncertainty in optimal control simulation. Mechanical Systems and Signal Processing, 121, 876-889.
Penner, J., & Leyendecker, S. (2019). Biomechanical simulations with dynamic muscle paths on NURBS surfaces. In Proceedings of the GAMM Annual Meeting. Vienna, AT.
Wenger, T., Ober-Blöbaum, S., & Leyendecker, S. (2018). Numerical properties of mixed order variational integrators applied to dynamical multirate systems. Halle, DE.
Glaas, D., & Leyendecker, S. (2018). Variational integrator based optimal feedback control for constrained mechanical systems. ZAMM - Zeitschrift für angewandte Mathematik und Mechanik.
Duong, M.T., Ach, T., Alkassar, M., Dittrich, S., & Leyendecker, S. (2018). Numerical simulation of cardiac muscles in a rat biventricular model. Glasgow, GB.
Eisentraudt, M., & Leyendecker, S. (2018). Fuzzy uncertainty in forward dynamics simulation. Mechanical Systems and Signal Processing, 126, 590-608.
Leyendecker, S., & Kosmas, O. (2018). Variational integrators for orbital problems using frequency estimation. Advances in Computational Mathematics, 1-21.
Schlögl, T. (2018). Modelling, simulation and optimal control of dielectric elastomer actuated systems (Dissertation).
Bentaleb, T., Pham, M.T., Eberard, D., & Marquis-Favre, W. (2018). Bond graph modeling and analysis of intermediary cooling system of a nuclear power plants. Lyon, FR.
Werner, A., Henze, B., Keppler, M., Loeffl, F., Leyendecker, S., & Ott, C. (2018). Structure preserving Multi-Contact Balance Control for Series-Elastic and Visco-Elastic Humanoid Robots. In 2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) (pp. 1233-1240). Madrid, ES: NEW YORK: IEEE.
Fonseca, R., Budday, D., & van den Bedem, H. (2018). Collision-free poisson motion planning in ultra high-dimensional molecular conformation spaces. Journal of Computational Chemistry.
Budday, D., Leyendecker, S., & van den Bedem, H. (2018). Kinematic Flexibility Analysis: Hydrogen Bonding Patterns Impart a Spatial Hierarchy of Protein Motion. Journal of Chemical Information and Modeling, 58(10), 2108-2122.
Leyendecker, S. (2018). Ein dynamisches Manikin mit faserbasierter Modellierung der Skelettmuskulatur.
Bentaleb, T., & Garulli, A. (2018). Model-Based Control Techniques for Turbomachinery. LAP LAMBERT Academic Publishing.
Penner, J., & Leyendecker, S. (2018). Optimization based muscle wrapping in biomechanical multibody simulations. München, DE.
Björkenstam, S., Carlson, J.S., Linn, J., Leyendecker, S., & Lennartson, B. (2018). Inverse Dynamics for Discrete Geometric Mechanics of Multibody Systems with Application to Direct Optimal Control. Journal of Computational and Nonlinear Dynamics.
Penner, J., & Leyendecker, S. (2018). Multi-obstacle muscle wrapping based on a discrete variational principle. Budapest, HU.
Lomakin, K., Pavlenko, T., Sippel, M., Gold, G., Helmreich, K., Ankenbrand, M.,... Franke, A. (2018). Impact of Surface Roughness on 3D printed SLS Horn Antennas. In European Conference on Antennas and Propagation (EUCAP).
Lomakin, K., Pavlenko, T., Sippel, M., Gold, G., Weidner, T., Helmreich, K.,... Franke, J. (2018). 3D Printed Helix Antenna. In European Conference on Antennas and Propagation (EUCAP). London, GB.
Leitz, T., & Leyendecker, S. (2018). Galerkin Lie-group variational integrators based on unit quaternion interpolation. Computer Methods in Applied Mechanics and Engineering, 338, 333-361.

Publications in addition (Download BibTeX)

Go to first page Go to previous page 1 of 4 Go to next page Go to last page

Jung, P., Leyendecker, S., Linn, J., & Ortiz, M. (2011). A discrete mechanics approach to Cosserat rod theory - Part I: static equilibria. International Journal For Numerical Methods in Engineering, Vol. 85, 31-60.
Leyendecker, S. (2011). On optimal control simulations for mechanical systems (Habilitation).
Maas, R., Siebert, T., & Leyendecker, S. (2010). Structure preserving simulation of human finger movements. Freudenstadt-Lauterbad, DE.
Ober-Blöbaum, S., & Leyendecker, S. (2010). A Variational Approach to Multirate Integration. Mexico City, MX.
Leyendecker, S., & Maas, R. (2010). Über diskrete Mechanik und Optimalsteuerung menschlicher Fingerbewegungen. Erlangen, DE.
Kanso, E., & Leyendecker, S. (2010). Optimal locomotion of a submerged Cosserat beam. Paris, FR.
Ober-Blöbaum, S., & Leyendecker, S. (2010). A variational approach to multirate integration. Paris, FR.
Maas, R., & Leyendecker, S. (2010). Structure preserving optimal control simulation of index finger dynamics. In Proceedings of The First Joint International Conference on Multibody System Dynamics (pp. DVD). Lappeenranta, FI.
Hartmann, C., & Leyendecker, S. (2010). Event-driven molecular dynamics and nonsmooth integration. Paris, FR.
Leyendecker, S. (2010). Optimal control of multibody dynamics with uncertainties. München, DE.
Leyendecker, S., Lucas, L.J., Owhadi, H., & Ortiz, M. (2010). Certification with optimal control strategies. In PAMM (pp. 621-622). Karlsruhe, Germany, DE.
Leyendecker, S., & Maas, R. (2010). Structure preserving simulation of optimal index finger trajectories during grasping. In PAMM (pp. 83-84). Karlsruhe, Germany, DE.
Leyendecker, S. (2010). Structure preserving methods in computational multibody dynamics and optimal control. Kaiserslautern, DE.
Leyendecker, S., Lucas, L.J., Owhadi, H., & Ortiz, M. (2010). Optimal control strategies for robust certification. Journal of Computational and Nonlinear Dynamics, Volume 5(Number 031008), 031008.
Lang, H., & Linn, J. (2009). A multibody system type modelling approach to geometrically exact rods using geometric finite differences. Lissabon, PT.
Kanso, E., & Leyendecker, S. (2009). Locomotion of a submerged Cosserat beam. In Proceedings of the 7th International Conference on Multibody Systems, Nonlinear Dynamics, and Control. (pp. DVD, 10 Seiten). San Diego, california, US.
Leyendecker, S. (2009). Discrete mechanics in space-time integration and optimal control. Göttingen, DE.
Leyendecker, S. (2009). Variational integrators in contact problems. Berlin, DE.
Leyendecker, S., Ober-Blöbaum, S., Marsden, J.E., & Ortiz, M. (2009). Discrete mechanics and optimal control for constrained systems. Optimal Control Applications & Methods, 31(Issue 6), 505-528.
Leyendecker, S. (2009). Structure preserving methods in computational multibody dynamics and optimal control. Erlangen, DE.

Last updated on 2019-08-03 at 10:29

Share link