Professur für Theoretische Physik

Adresse:
Staudtstraße 7
91058 Erlangen


Publikationen (Download BibTeX)

Go to first page Go to previous page 3 von 4 Go to next page Go to last page

Sahlmann, H. (2011). When do measures on the space of connections support the triad operators of loop quantum gravity? Journal of Mathematical Physics, 52(1). https://dx.doi.org/10.1063/1.3525706
Sahlmann, H., & Thiemann, T. (2011). Chern-Simons theory, Stokes' theorem, and the Duflo map. Journal of Geometry and Physics, 61(6), 1104-1121. https://dx.doi.org/10.1016/j.geomphys.2011.02.013
Giesel, K., & Sahlmann, H. (2011). From Classical To Quantum Gravity: Introduction to Loop Quantum Gravity. PoS - Proceedings of Science, C11-02-28, 55.
Zilker, T., & Thiemann, T. (2010). Quantum Simplicity Constraints and Area Spectrum (Bachelor thesis).
Sahlmann, H. (2010). On loop quantum gravity kinematics with a non-degenerate spatial background. Classical and Quantum Gravity, 27(22). https://dx.doi.org/10.1088/0264-9381/27/22/225007
Sahlmann, H. (2010). Wave propagation on a random lattice. Physical Review D - Particles, Fields, Gravitation and Cosmology, 82(6). https://dx.doi.org/10.1103/PhysRevD.82.064018
Sahlmann, H. (2008). Entropy calculation for a toy black hole. Classical and Quantum Gravity, 25(5). https://dx.doi.org/10.1088/0264-9381/25/5/055004
Sahlmann, H., & Fewster, C. (2008). Phase space quantization and loop quantum cosmology: A Wigner function for the Bohr-compactified real line. Classical and Quantum Gravity, 25(22). https://dx.doi.org/10.1088/0264-9381/25/22/225015
Sahlmann, H. (2008). Exploring the diffeomorphism invariant Hilbert space of a scalar field. (pp. 2791-2793). Berlin.
Sahlmann, H. (2007). Toward explaining black hole entropy quantization in loop quantum gravity. Physical Review D - Particles, Fields, Gravitation and Cosmology, 76(10). https://dx.doi.org/10.1103/PhysRevD.76.104050
Sahlmann, H. (2007). Exploring the diffeomorphism-invariant Hilbert space of a scalar field. Classical and Quantum Gravity, 24(18), 4601-4615. https://dx.doi.org/10.1088/0264-9381/24/18/003
Sahlmann, H., & Thiemann, T. (2006). Towards the QFT on curved spacetime limit of QGR: II. A concrete implementation. Classical and Quantum Gravity, 23(3), 909-954. https://dx.doi.org/10.1088/0264-9381/23/3/020
Perez, A., Sahlmann, H., & Sudarsky, D. (2006). On the quantum origin of the seeds of cosmic structure. Classical and Quantum Gravity, 23(7), 2317-2354. https://dx.doi.org/10.1088/0264-9381/23/7/008
Sahlmann, H., & Thiemann, T. (2006). Irreducibility of the Ashtekar-Isham-Lewandowski representation. Classical and Quantum Gravity, 23(13), 4453-4471. https://dx.doi.org/10.1088/0264-9381/23/13/010
Lewandowski, J., Okolow, A., Sahlmann, H., & Thiemann, T. (2006). Uniqueness of diffeomorphism invariant states on holonomy-flux algebras. Communications in Mathematical Physics, 267(3), 703-733. https://dx.doi.org/10.1007/s00220-006-0100-7
Sahlmann, H., & Thiemann, T. (2006). Towards the QFT on curved spacetime limit of QGR: I. A general scheme. Classical and Quantum Gravity, 23(3), 867-908. https://dx.doi.org/10.1088/0264-9381/23/3/019
Sahlmann, H., Bojowald, M., & Morales-Tecotl, H. (2005). Loop quantum gravity phenomenology and the issue of Lorentz invariance. Physical Review D - Particles, Fields, Gravitation and Cosmology, 71(8), 1-7. https://dx.doi.org/10.1103/PhysRevD.71.084012
Sahlmann, H., Ashtekar, A., & Lewandowski, J. (2003). Polymer and Fock representations for a scalar field. Classical and Quantum Gravity, 20(1). https://dx.doi.org/10.1088/0264-9381/20/1/103
Hawkins, E., Markopoulou, F., & Sahlmann, H. (2003). Evolution in quantum causal histories. Classical and Quantum Gravity, 20(16), 3839-3854. https://dx.doi.org/10.1088/0264-9381/20/16/320
Sahlmann, H., Thiemann, T., & Winkler, O. (2001). Coherent states for canonical quantum general relativity and the infinite tensor product extension. Nuclear Physics B, 606(1-2), 401-440.

Zuletzt aktualisiert 2019-24-04 um 10:28