Professur für Theoretische Physik

Address:
Staudtstraße 7
91058 Erlangen


Publications (Download BibTeX)

Go to first page Go to previous page 1 of 4 Go to next page Go to last page

Sahlmann, H., Kaminski, W., & Kisielowski, M. (2018). Asymptotic analysis of the EPRL model with timelike tetrahedra. Classical and Quantum Gravity, 35(13). https://dx.doi.org/10.1088/1361-6382/aac6a4
Wichert, J., & Sahlmann, H. (2018). The ideas of Kaluza and Klein in the context of loop quantum gravity (Master thesis).
Sahlmann, H., & Eder, K. (2018). Quantum theory of charged isolated horizons. PHYSICAL REVIEW D, 97(8). https://dx.doi.org/10.1103/PhysRevD.97.086016
Seeger, R., & Sahlmann, H. (2018). Towards Gaussian States for the Holonomy-Flux Weyl Algebra (Master thesis).
Kobler, M., & Giesel, K. (2018). Dynamical Properties of the Mukhanov-Sasaki Hamiltonian (Master thesis).
Dhandhukiya, S., & Sahlmann, H. (2017). Towards Hartle-Hawking states for connection variables. PHYSICAL REVIEW D, 95(8). https://dx.doi.org/10.1103/PhysRevD.95.084047
Sahlmann, H., & Zilker, T. (2017). Extensions of the Duflo map and Chern-Simons expectation values. Journal of Geometry and Physics, 121, 297 - 308. https://dx.doi.org/10.1016/j.geomphys.2017.07.022
Eder, K., & Sahlmann, H. (2017). Quantum theory of charged black hole horizons (Master thesis).
Wichert, J., & Sahlmann, H. (2016). What does the Penrose operator measure in loop quantum gravity? (Bachelor thesis).
Lewandowski, J., & Sahlmann, H. (2016). Loop quantum gravity coupled to a scalar field. Physical Review D - Particles, Fields, Gravitation and Cosmology, 93(2). https://dx.doi.org/10.1103/PhysRevD.93.024042
Dhandhukiya, S., & Sahlmann, H. (2016). On the Hartle-Hawking state for loop quantum gravity (Master thesis).
Neeb, K.-H., Thiemann, T., & Sahlmann, H. (2015). Weak Poisson structures on infinite dimensional manifolds and hamiltonian actions. In V. Dobrev (Eds.), Springer Proceedings in Mathematics & Statistics (pp. 105-136). Springer Japan.
Eder, K., & Sahlmann, H. (2015). Quantum tetrahedron and loop quantum gravity: The monochromatic four-vertex (Bachelor thesis).
Wolz, F., & Sahlmann, H. (2015). On spatially diffeomorphism invariant quantizations of the bosonic string (Master thesis).
Sahlmann, H., & Beier, U. (2015). Defects as a model of spacetime foam - Spinor and vector structures on the defect (Bachelor thesis).
Sahlmann, H., & Pranzetti, D. (2015). Horizon entropy with loop quantum gravity methods. Physics Letters B, 746, 209-216. https://dx.doi.org/10.1016/j.physletb.2015.04.070
Sahlmann, H., & Lewandowski, J. (2015). Symmetric scalar constraint for loop quantum gravity. Physical Review D - Particles, Fields, Gravitation and Cosmology, 91(4). https://dx.doi.org/10.1103/PhysRevD.91.044022
Sahlmann, H., & Seeger, R. (2015). Geometric properties of the Livine-Speziale coherent intertwiner (Bachelor thesis).
Roelcke, C., & Sahlmann, H. (2015). Conical space-time defects and their phenomenological consequences (Bachelor thesis).
Wasserka, T., & Sahlmann, H. (2014). Four-valent vertex and the Penrose metric (Bachelor thesis).

Last updated on 2016-05-05 at 04:58