Lehrstuhl für Informatik 5 (Mustererkennung)


Description:


   Researchers and students at Pattern Recognition Lab (LME) work on the development and implementation of algorithms to classify and analyze patterns like images or speech. The research is mostly interdisciplinary and is focussed on medical- and health engineering. The LME has close national and international collaborations with other universities, research institutes and industrial partners.



A summary of the projects at the Pattern Recognition Lab is available for download as a comprehensive brochure (PDF)


Address:
Martensstraße 3
91058 Erlangen



Subordinate Organisational Units

Juniorprofessur für Medizinische Bildverarbeitung
Professur für Informatik (Mustererkennung)
Stiftungs-Juniorprofessur für Sportinformatik (Digital Sports) - Reallocation / Closing


Research Fields

Big Data Applications
Medical Image Processing
Pattern Recognition & Machine Learning
Speech Processing and Understanding


Related Project(s)


DISPARITY: Digital, Semantic and Physical Analysis of Media Integrity
Prof. Dr.-Ing. Andreas Maier; Dr.-Ing. Christian Riess
(24/05/2016 - 23/05/2017)


(GRK 1773: Heterogene Bildsysteme):
RTG 1773: Heterogeneous Image Systems, Project C1
Prof. Dr. Rebecca Fahrig; Prof. Dr.-Ing. Andreas Maier
(01/10/2012 - 31/03/2017)


Open Access Publishing
Prof. Dr.-Ing. Joachim Hornegger
(01/01/2010 - 31/12/2019)



Publications (Download BibTeX)

Go to first page Go to previous page 1 of 58 Go to next page Go to last page

Bopp, J., Felsner, L., Hu, S., Käppler, S., & Rieß, C. (2018). X-ray Phase Contrast: Research on a Future Imaging Modality. In Medical Imaging Systems - An Introductory Guide (pp. 191--205).
Deitsch, S., Christlein, V., Berger, S., Buerhop-Lutz, C., Maier, A., Gallwitz, F.,... Rieß, C. (2018). Automatic Classification of Defective Photovoltaic Module Cells in Electroluminescence Images.
Davari, A., Aptoula, E., Yanikoglu, B., Maier, A., & Rieß, C. (2018). GMM-based Synthetic Samples for Classification of Hyperspectral Images with Limited Training Data. IEEE Geoscience and Remote Sensing Letters, 15(6), 942-946. https://dx.doi.org/10.1109/LGRS.2018.2817361
Deitsch, S., Buerhop-Lutz, C., Maier, A., Gallwitz, F., & Rieß, C. (2018). Segmentation of Photovoltaic Module Cells in Electroluminescence Images. arXiv.
Käppler, S., Maier, A., & Rieß, C. (2018). Differential Tomography: Influence of Sensitivity Direction and Noise-suppressing Windows. In Proceedings of the 5th International Conference on Image Formation in X-ray Computed Tomography (CT-Meeting) (pp. 119-122).
Timotius, I., Canneva, F., Minakaki, G., Pasluosta, C.F., Moceri, S., Casadei, N.,... Eskofier, B. (2018). Dynamic footprints of α-synucleinopathic mice recorded by CatWalk gait analysis. Data in Brief, 17, 189-193. https://dx.doi.org/10.1016/j.dib.2017.12.067
Schirrmacher, F., Köhler, G.T., & Rieß, C. (2018). Adaptive Quantile Sparse Image (AQuaSI) Prior for Inverse Imaging Problems.
Rybakov, O., Stromer, D., Mischewski, I., & Maier, A. (2018). Segmentation of Fat and Fascias in Canine Ultrasound Images. (pp. 6). Hörsäle Medizin Kleiner Hörsaal Ulmenweg 18 91054 Erlangen, DE: Berlin, Heidelberg: Springer Vieweg.
Ploner, S., Rieß, C., Schottenhamml, J., Moult, E.M., Waheed, N.K., Fujimoto, J.G., & Maier, A. (2018). A Joint Probabilistic Model for Speckle Variance, Amplitude Decorrelation and Interframe Variance (IFV) Optical Coherence Tomography Angiography. In Proceedings des Workshops Bildverarbeitung für die Medizin 2018 - Algorithmen - Systeme - Anwendungen (pp. 98--102). Erlangen.
Bopp, J., Ludwig, V., Gallersdörfer, M., Seifert, M., Pelzer, G., Maier, A.,... Rieß, C. (2018). Towards a dual phase grating interferometer on clinical hardware. (pp. 1057321). SPIE.
Bopp, J., Gallersdörfer, M., Ludwig, V., Seifert, M., Maier, A., Anton, G., & Rieß, C. (2018). Phasenkontrast Röntgen mit 2 Phasengittern und medizinisch relevanten Detektoren. In Proceedings des Workshops Bildverarbeitung für die Medizin 2018 - Algorithmen - Systeme - Anwendungen (pp. 170--175). Erlangen.
Timotius, I., Canneva, F., Minakaki, G., Pasluosta, C.F., Moceri, S., Casadei, N.,... Eskofier, B. (2018). Dynamic footprint based locomotion sway assessment in α-synucleinopathic mice using Fast Fourier Transform and Low Pass Filter. Journal of Neuroscience Methods, 296, 1-11. https://dx.doi.org/10.1016/j.jneumeth.2017.12.004
Aubreville, M., Goncalves, M., Knipfer, C., Oetter, N., Würfl, T., Neumann, H.,... Maier, A. (2018). Patch-based Carcinoma Detection on Confocal Laser Endomicroscopy Images - A Cross-Site Robustness Assessment. In Sheldon Wiebe, Hugo Gamboa,Ana Fred, Sergi Bermúdez i Badia (Eds.), Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2018) (pp. 27-34). Funchal, Madeira, Portugal, PT: SCITEPRESS – Science and Technology Publications, Lda.
Martindale, C., Roth, N., Hannink, J., Sprager, S., & Eskofier, B. (2018). Smart Annotation Tool for Multi-sensor gait based daily activity data. In 2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). Athens, GR.
Haji Ghassemi, N., Hannink, J., Martindale, C., Gaßner, H., Müller, M., Klucken, J., & Eskofier, B. (2018). Segmentation of Gait Sequences in Sensor-Based Movement Analysis: A Comparison of Methods in Parkinson’s Disease. Sensors.
Schmidkonz, C., Hollweg, C., Beck, M., Reinfelder, J., Götz, T., Sanders, J.,... Ritt, P. (2018). 99m Tc-MIP-1404-SPECT/CT for the detection of PSMA-positive lesions in 225 patients with biochemical recurrence of prostate cancer. Prostate, 78(1), 54-63. https://dx.doi.org/10.1002/pros.23444
Davari, A., Sakaltras, N., Haeberle, A., Vesal, S., Christlein, V., Maier, A., & Rieß, C. (2018). Hyper-Hue and EMAP on Hyperspectral Images for Supervised Layer Decomposition of Old Master Drawings.
Fürsattel, P., Placht, S., Maier, A., & Riess, C. (2018). Geometric primitive refinement for structured light cameras. Machine Vision and Applications, 29(2), 313-327. https://dx.doi.org/10.1007/s00138-017-0901-z
Vasquez Correa, J., Orozco-Arroyave, J.R., Bocklet, T., & Nöth, E. (2018). Towards an automatic evaluation of the dysarthria level of patients with Parkinson's disease. Journal of Communication Disorders, 76(0), 21-36. https://dx.doi.org/10.1016/j.jcomdis.2018.08.002
Aubreville, M., Bertram, C.A., Klopfleisch, R., & Maier, A. (2018). SlideRunner - A Tool for Massive Cell Annotations in Whole Slide Images. In Bildverarbeitung für die Medizin 2018 - Algorithmen - Systeme - Anwendungen. Proceedings des Workshops vom 11. bis 13. März 2018 in Erlangen (pp. 309-314). Erlangen, DE: Springer Berlin Heidelberg.

Last updated on 2018-12-01 at 15:08