Lehrstuhl für Experimentalphysik


Beschreibung:


Our reserach activites focus on the materials science of novel materials, in particular graphene and related two-dimensional crystals - such as transition-metal dichalcogenides - , carbon nanotubes, and semiconductor nanostructures. We use optical and vibrational spectroscopy with focus on high spatial resolution, resonance effects, and in-situ methods, in combination with density-functional theory computations. Our recent work addresses the structural, electronic, and optical properties of 1D and 2D materials, in particular the effect of interlayer interaction, interfaces, and chemical functionalization.


Adresse:
Erwin-Rommel-Straße 1
91058 Erlangen



Untergeordnete Organisationseinheiten

Professur für Experimentalphysik


Forschungsbereiche

Graphene
Layered materials
Low-dimensional carbon materials
Polymer surfaces graphitization by low-energy ion irradiation


Forschungsprojekt(e)


(SFB 953: Synthetische Kohlenstoffallotrope):
B13 "Optische und strukturelle Eigenschaften von räumlich definierter Funktionalisierung in Kohlenstoff-Nanotubes und Graphen"
Prof. Dr. Janina Maultzsch
(01.07.2018)


Spitzenverstärkte Ramanstreuung zur Entschlüsselung molekularer Wechselwirkungen in Systemen aus individuellen Kohlenstoff- Nanotubes
Prof. Dr. Janina Maultzsch
(01.01.2017 - 31.05.2020)


(SFB 787 Halbleiternanophotonik):
D Integriertes Graduiertenkolleg "School of Nanophotonics"
Prof. Dr. Janina Maultzsch
(01.01.2016 - 31.12.2019)


(SFB 787 Halbleiternanophotonik):
A6 Electron-Phonon Interaction in Semiconductor Nanostructures
Prof. Dr. Janina Maultzsch
(01.01.2012 - 31.12.2019)



Publikationen (Download BibTeX)

Go to first page Go to previous page 10 von 10 Go to next page Go to last page

Maultzsch, J. (2004). Chirality distribution and transition energies of carbon nanotubes. Physical Review Letters, 93(17). https://dx.doi.org/10.1103/PhysRevLett.93.177401
Maultzsch, J. (2004). Double-resonant Raman scattering in graphite: Interference effects, selection rules, and phonon dispersion. Physical Review B, 70(15). https://dx.doi.org/10.1103/PhysRevB.70.155403
Koval, Y. (2004). Mechanism of etching and surface relief development of PMMA under low-energy ion bombardment. Journal of Vacuum Science & Technology B, 22(2), 843-851. https://dx.doi.org/10.1116/1.1689306
Koval, Y., Fistul, M., & Ustinov, A. (2004). Enhancement of Josephson phase diffusion by microwaves. Physical Review Letters, 93(8), 087004. https://dx.doi.org/10.1103/PhysRevLett.93.087004
Reich, S., Thomsen, C., & Maultzsch, J. (2004). Carbon Nanotubes: Basic Concepts and Physical Properties. Wiley-VCH.
Maultzsch, J. (2003). High-energy phonon branches of an individual metallic carbon nanotube. Physical Review Letters, 91(8). https://dx.doi.org/10.1103/PhysRevLett.91.087402
Maultzsch, J. (2003). The radial breathing mode frequency in double-walled carbon nanotubes: an analytical approximation. physica status solidi (b), 237(2), R7-R10. https://dx.doi.org/10.1002/pssb.200301825
Maultzsch, J. (2003). Quantum numbers and band topology of nanotubes. Journal of Physics A: Mathematical and General, 36(21), 5707-5717.
Fistul, M., Wallraff, A., Koval, Y., Lukashenko, O., Malomed, B., & Ustinov, A. (2003). Quantum dissociation of a vortex-antivortex pair in a long Josephson junction. Physical Review Letters, 91, 257004.
Wallraff, A., Lukashenko, O., Lisenfeld, J., Kemp, A., Fistul, M., Koval, Y., & Ustinov, A. (2003). Quantum dynamics of a single vortex. Nature, 425, 155. https://dx.doi.org/10.1038/nature01826
Sivakov, A., Glukhov, A., Omelyanchouk, A., Koval, Y., Müller, P., & Ustinov, A. (2003). Josephson behavior of phase-slip lines in wide superconducting strips. Physical Review Letters, 91, 267001.
Maultzsch, J. (2002). Raman characterization of boron-doped multiwalled carbon nanotubes. Applied Physics Letters, 81(14), 2647-2649. https://dx.doi.org/10.1063/1.1512330
Maultzsch, J. (2002). Tight-binding description of graphene. Physical Review B, 66(3). https://dx.doi.org/10.1103/PhysRevB.66.035412
Maultzsch, J. (2002). Raman scattering in carbon nanotubes revisited. Physical Review B, 65(23). https://dx.doi.org/10.1103/PhysRevB.65.233402
Maultzsch, J. (2002). Phonon dispersion of carbon nanotubes. Solid State Communications, 121(9-10), 471-474.
Maultzsch, J. (2001). Chirality-selective Raman scattering of the D mode in carbon nanotubes. Physical Review B, 64(12).
Maultzsch, J. (2001). Resonant Raman scattering in GaAs induced by an embedded InAs monolayer. Physical Review B, 63(3).
Rother, S., Koval, Y., Müller, P., Kasai, Y., Nakajima, K., & Darula, M. (2001). FIR response of intrinsic Josephson Junctions. IEEE Transactions on Applied Superconductivity, 11, 1191. https://dx.doi.org/10.1109/77.919562
Wallraff, A., Koval, Y., Levitchev, M., Fistul, M., & Ustinov, A. (2000). Annular long Josephson junctions in a magnetic field: Engineering and probing the fluxon potential.
Koval, Y., Wallraff, A., Fistul, M., Thyssen, N., Kohlstedt, H., & Ustinov, A. (1999). Narrow long Josephson junctions. IEEE Transactions on Applied Superconductivity, 9, 3957. https://dx.doi.org/10.1109/77.783894

Zuletzt aktualisiert 2019-24-04 um 10:22