Lehrstuhl für Werkstoffwissenschaften (Allgemeine Werkstoffeigenschaften)


Description:


The research topics of the Institute for General Materials Properties are related with the mechanical properties of structural materials in a broad sense. Testing of the mechanical properties from the nanoscale to macroscopic properties is performed on all aspects including high temperature properties, fatigue, creep, friction and wear. Our research direction is focused on understanding the properties from a micro and nanostructural basis. Therefore microsopic techniques from electron microscopy and scanning probe microscopy to optical techniques are applied to evaluate the microstructural constitution of materials on all length scales.

Address:
Martensstraße 5/7
91058 Erlangen



Subordinate Organisational Units

Juniorprofessor für Werkstoffwissenschaften (3D-Nanoanalytik und Atomsondenmikroskopie)
Juniorprofessur für Werkstoffmikromechanik
Professur für Werkstoffwissenschaften (Simulation und Werkstoffeigenschaften)


Related Project(s)

Go to first page Go to previous page 1 of 5 Go to next page Go to last page

HiMat: Eine innovative Prüfmaschine für Heizen, Abschrecken, Ziehen, Drücken und Rissbildungsuntersuchungen von industrierelevanten Hochtemperaturlegierungen
Dr.-Ing. Steffen Neumeier
(01/07/2019 - 30/06/2022)


SPP 2074 Fundamental multiscale investigations for improved calculation of the service life of solid lubricated rolling bearings
PD Dr. habil. Benoit Merle; Prof. Dr. Bernd Meyer; Dr.-Ing. Stephan Tremmel
(01/04/2019 - 31/03/2022)


(In-situ-Mikroskopie mit Elektronen, Röntgenstrahlen und Rastersonden):
GRK1896-B3: Mechanische Eigenschaften und Bruchverhalten von dünnen Schichten
Prof. Dr. Mathias Göken; PD Dr. habil. Benoit Merle
(01/04/2018 - 30/09/2022)


ReguLus: Defekt- und Mikrostrukturen, mechanische Eigenschaften und optimierte Wärmebehandlungsstrategien additiv gefertigter Titanlegierungen für großvolumige Luftfahrtstrukturkomponenten (ReguLus)
Prof. Dr. Mathias Göken; PD Dr.-Ing. Heinz Werner Höppel
(01/01/2018 - 31/12/2021)


(SLM-PROP: Verbundvorhaben TARES 2020):
SLM-PROP: Selective laser melting alloys : Process-related material properties & design rules
Prof. Dr. Mathias Göken; PD Dr.-Ing. Heinz Werner Höppel; Dr.-Ing. Steffen Neumeier
(01/02/2017 - 21/01/2023)



Publications (Download BibTeX)

Go to first page Go to previous page 19 of 20 Go to next page Go to last page

Mughrabi, H., & Höppel, H.W. (2004). Fatigue and microstructure of ultrafine-grained metals produced by severe plastic deformation. Scripta Materialia, 51, 807-812. https://dx.doi.org/10.1016/j.scriptamat.2004.05.012
Durst, K., Höppel, H.W., & Göken, M. (2004). Mikrostruktur und lokale mechanische Eigenschaften von platinmodifizierten Aluminidschichten auf Nickelbasis-Superlegierungen nach thermomechanischer Ermüdung. In Prakt. Met. Sonderband 36 (pp. 117-122). Bochum: Frankfurt: Informationsgesellschaft.
Göken, M. (2004). Correlation between constitution, properties and machining performance of TiN/ZrN multilayers. Surface & Coatings Technology, 188-189, 331-337. https://dx.doi.org/10.1016/j.surfcoat.2004.08.056
Durst, K., & Göken, M. (2004). Nanoindentierung – Eine Sonde für die lokalen mechanischen Eigenschaften. In Met. Sonderband 36 (pp. 319-328). Bochum: Frankfurt: Informationsgesellschaft.
Höppel, H.W., Neuner, F., & Nützel, R. (2004). Fretting fatigue of low carbon steels in the high cycle fatigue regime. In 5th Int. Conf on Low Cycle Fatigue (pp. 139-146). Berlin: Berlin: DVM.
Göken, M. (2003). Characterization of phases of aluminized nickel base superalloys. Surface & Coatings Technology, 167 (, 83-96. https://dx.doi.org/10.1016/S0257-8972(02)00843-5
Höppel, H.W. (2003). Untersuchung von mikrostrukturellen Einflussgrößen auf das Reibermüdungsverhalten und auf die Schädigungsmechanismen am Beispiel von Eisenbasislegierungen. In 10. Roell Amsler Symposium 2003 (pp. 93-106). ~.
Mughrabi, H., Höppel, H.W., Kautz, M., & Valiev, R. (2003). Annealing treatments to enhance thermal and mechanical stability of ultrafine-grained metals produced by severe plastic deformation. Zeitschrift für Metallkunde, 94, 1079-1083. https://dx.doi.org/10.3139/146.031079
Höppel, H.W. (2002). On the possibilities to enhance the fatigue properties of ultrafine-grained metals. Zeitschrift für Metallkunde, 93, 641-648.
Höppel, H.W., Mughrabi, H., & Kautz, M. (2002). Fatigue lives and cyclic deformation behaviour of ultrafine grained materials. In Mechanismenorientierten Lebensdauervorhersage für zyklisch beanspruchte metallische Werkstoffe (pp. 179-188). Berlin.
Höppel, H.W., & Mughrabi, H. (2002). Cyclic deformation and fatigue behaviour of the magnesium alloy AZ91: temperature effects and two-step fatigue tests. In Proc. of 8th Int. Fatigue Congress (FATIGUE 2002) (pp. 1633-1640). West Midlands, UK: EMAS Ltd..
Mughrabi, H., & Höppel, H.W. (2002). A finite element modelling study of strain localization in the vicinity of near-surface cavities as a cause of subsurface fatigue crack initiation. International Journal of Fracture, 115 (, 227-232. https://dx.doi.org/10.1023/A:1016350528652
Höppel, H.W., & Mughrabi, H. (2002). Microstructural study of the parameters governing coarsening and cyclic softening in fatigued ultrafine-grained copper. Philosophical Magazine A, 1781-1794. https://dx.doi.org/10.1080/01418610210131399
Mughrabi, H., & Höppel, H.W. (2002). Ermüdungslebensdauer der Magnesiumlegierung AZ91: Experiment und Modellierung. Materialwissenschaft und Werkstofftechnik, 238-243.
Höppel, H.W., & Mughrabi, H. (2002). Ermüdungslebensdauer der Magnesiumlegierung AZ 91: Expriment und Modellierung. In Mechanismenorientierte Lebensdauervorhersage für zyklisch beanspruchte metallische Werkstoffe (pp. 169-178). Berlin.
Höppel, H.W. (2002). Editorial in special issue of the ocassion of Prof. Mughrabi's 65th Birthday, Haël Mughrabi 65 years. Zeitschrift für Metallkunde, 93, 600-601.
Mughrabi, H., & Höppel, H.W. (2002). A low-cycle fatigue life predication model of ultrafine-grained metals. Fatigue & Fracture of Engineering Materials & Structures, 25, 975-984.
Greil, P., & Höppel, H.W. (2002). Polysiloxane-derived ceramic foam for the reinforcement of Mg alloy. Zeitschrift für Metallkunde, 93, 812-818.
Göken, M., & Durst, K. (2002). Finite element simulation of spherical indentation in the elastic / plastic transition. Zeitschrift für Metallkunde, 93, 857-861.
Höppel, H.W., & Mughrabi, H. (2001). Cyclic deformation behaviour of ultrafine grain size copper produced by equal channel angular extrusion;. In Materials Week 2000 Proceedings (pp. ~). Frankfurt.


Publications in addition (Download BibTeX)

Go to first page Go to previous page 2 of 3 Go to next page Go to last page

Blum, W., & Zeng, X.H. (2011). Corrigendum to “A simple dislocation model of deformation resistance of ultrafine-grained materials explaining Hall-Petch strengthening and enhanced strain rate sensitivity” (Acta Materialia (2009) 57 (1966-1974)). Acta Materialia, 59. https://dx.doi.org/10.1016/j.actamat.2011.05.032
Blum, W., & Zeng, X.H. (2011). Erratum: A simple dislocation model of deformation resistance of ultrafine-grained materials explaining Hall-Petch strengthening and enhanced strain rate sensitivity (Acta Materialia (2009) 57 (1966-1974)). Acta Materialia, 59(15), 6205-6206. https://dx.doi.org/10.1016/j.actamat.2011.05.032
Schneibel, J.H., Heilmaier, M., Blum, W., Hasemann, G., & Shanmugasundaram, T. (2011). Temperature dependence of the strength of fine- and ultrafine-grained materials. Acta Materialia, 59(3), 1300-1308. https://dx.doi.org/10.1016/j.actamat.2010.10.062
Blum, W., Li, Y.J., Zhang, Y., & Wang, J.T. (2011). Deformation resistance in the transition from coarse-grained to ultrafine-grained Cu by severe plastic deformation up to 24 passes of ECAP. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 528(29-30), 8621-8627. https://dx.doi.org/10.1016/j.msea.2011.08.010
Mompiou, F., Legros, M., Caillard, D., & Mughrabi, H. (2010). In situ TEM observations of reverse dislocation motion upon unloading of tensile-deformed UFG aluminium. Journal of Physics : Conference Series, 240. https://dx.doi.org/10.1088/1742-6596/240/1/012137
Weidner, A., Amberger, D., Pyczak, F., Schoenbauer, B., Stanzl-Tschegg, S., & Mughrabi, H. (2010). Fatigue damage in copper polycrystals subjected to ultrahigh-cycle fatigue below the PSB threshold. International Journal of Fatigue, 32(6), 872-878. https://dx.doi.org/10.1016/j.ijfatigue.2009.04.004
Mughrabi, H. (2010). Fatigue, an everlasting materials problem - Still en vogue. Procedia Engineering, 2(1), 3-26. https://dx.doi.org/10.1016/j.proeng.2010.03.003
Blum, W., & Eisenlohr, P. (2010). A simple dislocation model of the influence of high-angle boundaries on the deformation behavior of ultrafine-grained materials. Journal of Physics : Conference Series, 240. https://dx.doi.org/10.1088/1742-6596/240/1/012136
Blum, W. (2009). Role of boundaries in control of deformation rate and strength of crystalline materials. Materials Science Forum, 604-605, 391-401. https://dx.doi.org/10.4028/3-908453-09-7.391
Kumar, P., Kassner, M.E., Blum, W., Eisenlohr, P., & Langdon, T.G. (2009). New observations on high-temperature creep at very low stresses. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 510-511(C), 20-24. https://dx.doi.org/10.1016/j.msea.2008.04.094
Ziegenhain, G., Hartmaier, A., & Urbassek, H.M. (2009). Pair vs many-body potentials: Influence on elastic and plastic behavior in nanoindentation of fcc metals. Journal of the Mechanics and Physics of Solids, 57(9), 1514-1526. https://dx.doi.org/10.1016/j.jmps.2009.05.011
Eisenlohr, P., Blum, W., & Milicka, K. (2009). Dislocation glide velocity in creep of Mg alloys derived from dip tests. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 510-511(C), 393-397. https://dx.doi.org/10.1016/j.msea.2008.04.120
Mughrabi, H. (2009). Microstructural aspects of high temperature deformation of monocrystalline nickel base superalloys: Some open problems. Journal of Materials Science & Technology, 25(2), 191-204. https://dx.doi.org/10.1179/174328408X361436
Boehner, A., Janisch, R., & Hartmaier, A. (2009). Ab initio investigation of diamond coatings on steel. Scripta Materialia, 60(7), 504-507. https://dx.doi.org/10.1016/j.scriptamat.2008.11.042
Mughrabi, H. (2009). Cyclic slip irreversibilities and the evolution of fatigue damage. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 40(4), 431-453. https://dx.doi.org/10.1007/s11663-009-9240-4
Blum, W., & Eisenlohr, P. (2009). Dislocation mechanics of creep. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 510-511(C), 7-13. https://dx.doi.org/10.1016/j.msea.2008.04.110
Broedling, N.C., Hartmaier, A., Buehler, M.J., & Gao, H. (2008). The strength limit in a bio-inspired metallic nanocomposite. Journal of the Mechanics and Physics of Solids, 56(3), 1086-1104. https://dx.doi.org/10.1016/j.jmps.2007.06.006
Higashida, K., Tanaka, M., Hartmaier, A., & Hoshino, Y. (2008). Analyzing crack-tip dislocations and their shielding effect on fracture toughness. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 483-484(1-2 C), 13-18. https://dx.doi.org/10.1016/j.msea.2006.12.174
Broedling, N.C., Hartmaier, A., & Gao, H. (2008). Fracture toughness of layered structures: Embrittlement due to confinement of plasticity. Engineering Fracture Mechanics, 75(12), 3743-3754. https://dx.doi.org/10.1016/j.engfracmech.2007.10.014
Deserno, F. (2000). Diplomarbeit: Verformungswiderstand von TiAlV6 bei mittleren Temperaturen (Diploma thesis).

Last updated on 2019-24-04 at 10:16