Lehrstuhl für Werkstoffwissenschaften (Allgemeine Werkstoffeigenschaften)


Description:


The research topics of the Institute for General Materials Properties are related with the mechanical properties of structural materials in a broad sense. Testing of the mechanical properties from the nanoscale to macroscopic properties is performed on all aspects including high temperature properties, fatigue, creep, friction and wear. Our research direction is focused on understanding the properties from a micro and nanostructural basis. Therefore microsopic techniques from electron microscopy and scanning probe microscopy to optical techniques are applied to evaluate the microstructural constitution of materials on all length scales.

Address:
Martensstraße 5/7
91058 Erlangen



Subordinate Organisational Units

Juniorprofessor für Werkstoffwissenschaften (3D-Nanoanalytik und Atomsondenmikroskopie)
Juniorprofessur für Werkstoffmikromechanik
Professur für Werkstoffwissenschaften (Simulation und Werkstoffeigenschaften)


Related Project(s)

Go to first page Go to previous page 1 of 5 Go to next page Go to last page

HiMat: Eine innovative Prüfmaschine für Heizen, Abschrecken, Ziehen, Drücken und Rissbildungsuntersuchungen von industrierelevanten Hochtemperaturlegierungen
Dr.-Ing. Steffen Neumeier
(01/07/2019 - 30/06/2022)


SPP 2074 Fundamental multiscale investigations for improved calculation of the service life of solid lubricated rolling bearings
PD Dr. habil. Benoit Merle; Prof. Dr. Bernd Meyer; Dr.-Ing. Stephan Tremmel
(01/04/2019 - 31/03/2022)


(In-situ-Mikroskopie mit Elektronen, Röntgenstrahlen und Rastersonden):
GRK1896-B3: Mechanische Eigenschaften und Bruchverhalten von dünnen Schichten
Prof. Dr. Mathias Göken; PD Dr. habil. Benoit Merle
(01/04/2018 - 30/09/2022)


ReguLus: Defekt- und Mikrostrukturen, mechanische Eigenschaften und optimierte Wärmebehandlungsstrategien additiv gefertigter Titanlegierungen für großvolumige Luftfahrtstrukturkomponenten (ReguLus)
Prof. Dr. Mathias Göken; PD Dr.-Ing. Heinz Werner Höppel
(01/01/2018 - 31/12/2021)


(SLM-PROP: Verbundvorhaben TARES 2020):
SLM-PROP: Selective laser melting alloys : Process-related material properties & design rules
Prof. Dr. Mathias Göken; PD Dr.-Ing. Heinz Werner Höppel; Dr.-Ing. Steffen Neumeier
(01/02/2017 - 21/01/2023)



Publications (Download BibTeX)

Go to first page Go to previous page 19 of 19 Go to next page Go to last page

Mughrabi, H., Höppel, H.W., Kautz, M., & Valiev, R. (2003). Annealing treatments to enhance thermal and mechanical stability of ultrafine-grained metals produced by severe plastic deformation. Zeitschrift für Metallkunde, 94, 1079-1083. https://dx.doi.org/10.3139/146.031079
Höppel, H.W. (2003). Untersuchung von mikrostrukturellen Einflussgrößen auf das Reibermüdungsverhalten und auf die Schädigungsmechanismen am Beispiel von Eisenbasislegierungen. In 10. Roell Amsler Symposium 2003 (pp. 93-106). ~.
Göken, M. (2003). Characterization of phases of aluminized nickel base superalloys. Surface & Coatings Technology, 167 (, 83-96. https://dx.doi.org/10.1016/S0257-8972(02)00843-5
Höppel, H.W., & Mughrabi, H. (2002). Cyclic deformation and fatigue behaviour of the magnesium alloy AZ91: temperature effects and two-step fatigue tests. In Proc. of 8th Int. Fatigue Congress (FATIGUE 2002) (pp. 1633-1640). West Midlands, UK: EMAS Ltd..
Greil, P., & Höppel, H.W. (2002). Polysiloxane-derived ceramic foam for the reinforcement of Mg alloy. Zeitschrift für Metallkunde, 93, 812-818.
Mughrabi, H., & Höppel, H.W. (2002). A finite element modelling study of strain localization in the vicinity of near-surface cavities as a cause of subsurface fatigue crack initiation. International Journal of Fracture, 115 (, 227-232. https://dx.doi.org/10.1023/A:1016350528652
Mughrabi, H., & Höppel, H.W. (2002). A low-cycle fatigue life predication model of ultrafine-grained metals. Fatigue & Fracture of Engineering Materials & Structures, 25, 975-984.
Höppel, H.W. (2002). Editorial in special issue of the ocassion of Prof. Mughrabi's 65th Birthday, Haël Mughrabi 65 years. Zeitschrift für Metallkunde, 93, 600-601.
Höppel, H.W., Mughrabi, H., & Kautz, M. (2002). Fatigue lives and cyclic deformation behaviour of ultrafine grained materials. In Mechanismenorientierten Lebensdauervorhersage für zyklisch beanspruchte metallische Werkstoffe (pp. 179-188). Berlin.
Höppel, H.W., & Mughrabi, H. (2002). Ermüdungslebensdauer der Magnesiumlegierung AZ 91: Expriment und Modellierung. In Mechanismenorientierte Lebensdauervorhersage für zyklisch beanspruchte metallische Werkstoffe (pp. 169-178). Berlin.
Höppel, H.W., & Mughrabi, H. (2002). Microstructural study of the parameters governing coarsening and cyclic softening in fatigued ultrafine-grained copper. Philosophical Magazine A, 1781-1794. https://dx.doi.org/10.1080/01418610210131399
Mughrabi, H., & Höppel, H.W. (2002). Ermüdungslebensdauer der Magnesiumlegierung AZ91: Experiment und Modellierung. Materialwissenschaft und Werkstofftechnik, 238-243.
Höppel, H.W. (2002). On the possibilities to enhance the fatigue properties of ultrafine-grained metals. Zeitschrift für Metallkunde, 93, 641-648.
Göken, M., & Durst, K. (2002). Finite element simulation of spherical indentation in the elastic / plastic transition. Zeitschrift für Metallkunde, 93, 857-861.
Höppel, H.W., & Mughrabi, H. (2001). Cyclic deformation behaviour of ultrafine grain size copper produced by equal channel angular extrusion;. In Materials Week 2000 Proceedings (pp. ~). Frankfurt.
Mughrabi, H., & Höppel, H.W. (2001). Cyclic deformation and fatigue behaviour of the magnesium alloy AZ91. In Proc. of 12th Int. Conf. on Strength of Materials (ICSMA 12) (pp. 139-143). Mat. Sci. Eng. A319-321: ~.
Pyczak, F., Biermann, H., Mughrabi, H., Volek, A., & Singer, R. (2000). CBED-Measurement of Residual Internal Strains in the Neighbourhood of TCP-Phases in Ni-Base Superalloys. In K. Green, T. M. Pollock, R. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S. Olson, J.J. Schirra (Eds.), Superalloys 2000: Proceedings of the 9th Intenational Symposium of Superalloys (pp. 367-376). Seven Springs: TMS.
Christ, H.-J., Künecke, U., Meyer, K., & Sockel, H.-G. (1988). Mechanisms of high-temperature corrosion in helium containing small amounts of impurities. II. Corrosion of the nickel-base alloy inconel 617. Oxidation of Metals, 30, 27-51. https://dx.doi.org/10.1007/BF00656643
Christ, H.-J., Künecke, U., Meyer, K., & Sockel, H.-G. (1987). High temperature corrosion of the nickel-based alloy Inconel 617 in helium containing small amounts of impurities. Materials Science and Engineering, 87, 161-168. https://dx.doi.org/10.1016/0025-5416(87)90374-0


Publications in addition (Download BibTeX)

Go to first page Go to previous page 1 of 3 Go to next page Go to last page

Mughrabi, H. (2016). The a-factor in the Taylor flow-stress law in monotonic, cyclic and quasi stationary deformations: Dependence on slip mode, dislocation arrangement and density. Current Opinion in Solid State & Materials Science. https://dx.doi.org/10.1016/j.cossms.2016.07.001
Blum, W., Eisenlohr, P., & Hu, J. (2016). Interpretation of unloading tests on nanocrystalline Cu in terms of two mechanisms of deformation. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 665, 171-174. https://dx.doi.org/10.1016/j.msea.2016.04.013
Antolovich, S.D., & Mughrabi, H. (2016). In Memoriam Claude Bathias 1938–2015. International Journal of Fatigue, 93, 215-215. https://dx.doi.org/10.1016/j.ijfatigue.2016.03.007
Mughrabi, H., & Antolovich, S.D. (2016). A tribute to Claude Bathias – Highlights of his pioneering work in Gigacycle Fatigue. International Journal of Fatigue, 93, 217-223. https://dx.doi.org/10.1016/j.ijfatigue.2016.04.020
Favier, V., Blanche, A., Wang, C., Ngoc Lam Phung, ., Ranc, N., Wagner, D.,... Mughrabi, H. (2016). Very high cycle fatigue for single phase ductile materials: Comparison between α-iron, copper and α-brass polycrystals. International Journal of Fatigue, 93, 326-338. https://dx.doi.org/10.1016/j.ijfatigue.2016.05.034
Blum, W., Dvorak, J., Kral, P., Eisenlohr, P., & Sklenicka, V. (2015). Correct Interpretation of Creep Rates: A Case Study of Cu. Journal of Materials Science & Technology, 31, 1065-1068. https://dx.doi.org/10.1016/j.jmst.2015.09.012
Mughrabi, H. (2015). Microstructural mechanisms of cyclic deformation, fatigue crack initiation and early crack growth. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 373(2038). https://dx.doi.org/10.1098/rsta.2014.0132
Blum, W., Dvorak, J., Kral, P., Petrenec, M., Eisenlohr, P., & Sklenicka, V. (2015). In situ study of microstructure and strength of severely predeformed pure Cu in deformation at 573K. Philosophical Magazine, 95, 3696-3711. https://dx.doi.org/10.1080/14786435.2015.1096025
Sun, Z., Van Petegem, S., Cervellino, A., Durst, K., Blum, W., & Van Swygenhoven, H. (2015). Dynamic recovery in nanocrystalline Ni. Acta Materialia, 91, 91-100. https://dx.doi.org/10.1016/j.actamat.2015.03.033
Blum, W., Dvorak, J., Kral, P., Eisenlohr, P., & Sklenicka, V. (2014). Effect of grain refinement by ECAP on creep of pure Cu. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 590, 423-432. https://dx.doi.org/10.1016/j.msea.2013.10.022
Blum, W., Dvorak, J., Kral, P., Eisenlohr, P., & Sklenicka, V. (2014). What is "stationary" deformation of pure Cu? Journal of Materials Science, 49(8), 2987-2997. https://dx.doi.org/10.1007/s10853-013-7983-4
Mughrabi, H. (2014). The importance of sign and magnitude of γ/γ′ lattice misfit in superalloys - With special reference to the new γ′-hardened cobalt-base superalloys. Acta Materialia, 81, 21-29. https://dx.doi.org/10.1016/j.actamat.2014.08.005
Mughrabi, H. (2014). Comment on 'Constant intermittent flow of dislocations: Central problems in plasticity' by L. M. Brown. Journal of Materials Science & Technology, 30(1), 123-126. https://dx.doi.org/10.1179/1743284713Y.0000000224
Phung, N.L., Favier, V., Ranc, N., Vales, F., & Mughrabi, H. (2014). Very high cycle fatigue of copper: Evolution, morphology and locations of surface slip markings. International Journal of Fatigue, 63, 68-77. https://dx.doi.org/10.1016/j.ijfatigue.2014.01.007
Mughrabi, H. (2013). Microstructural fatigue mechanisms: Cyclic slip irreversibility, crack initiation, non-linear elastic damage analysis. International Journal of Fatigue, 57, 2-8. https://dx.doi.org/10.1016/j.ijfatigue.2012.06.007
Rahim, M., Frenzel, J., Frotscher, M., Pfetzing-Micklich, J., Steegmueller, R., Wohlschloegel, M.,... Eggeler, G. (2013). Impurity levels and fatigue lives of pseudoelastic NiTi shape memory alloys. Acta Materialia, 61(10), 3667-3686. https://dx.doi.org/10.1016/j.actamat.2013.02.054
Mughrabi, H. (2013). Cyclic strain rate effects in fatigued face-centred and body-centred cubic metals. Philosophical Magazine, 93(28-30), 3821-3834. https://dx.doi.org/10.1080/14786435.2013.779396
Mughrabi, H. (2013). Damage mechanisms and fatigue lives: From the low to the very high cycle regime. Procedia Engineering, 55, 636-644. https://dx.doi.org/10.1016/j.proeng.2013.03.307
Mompiou, F., Caillard, D., Legros, M., & Mughrabi, H. (2012). In situ TEM observations of reverse dislocation motion upon unloading in tensile-deformed UFG aluminium. Acta Materialia, 60(8), 3402-3414. https://dx.doi.org/10.1016/j.actamat.2012.02.049
Blum, W., & Eisenlohr, P. (2011). Structure evolution and deformation resistance in production and application of ultrafine-grained materials - The concept of steady-state grains. Materials Science Forum, 683, 163-181. https://dx.doi.org/10.4028/www.scientific.net/MSF.683.163

Last updated on 2019-24-04 at 10:16