Lehrstuhl für Werkstoffwissenschaften (Allgemeine Werkstoffeigenschaften)


Description:


The research topics of the Institute for General Materials Properties are related with the mechanical properties of structural materials in a broad sense. Testing of the mechanical properties from the nanoscale to macroscopic properties is performed on all aspects including high temperature properties, fatigue, creep, friction and wear. Our research direction is focused on understanding the properties from a micro and nanostructural basis. Therefore microsopic techniques from electron microscopy and scanning probe microscopy to optical techniques are applied to evaluate the microstructural constitution of materials on all length scales.

Address:
Martensstraße 5/7
91058 Erlangen



Subordinate Organisational Units

Juniorprofessor für Werkstoffwissenschaften (3D-Nanoanalytik und Atomsondenmikroskopie)
Juniorprofessur für Werkstoffmikromechanik
Professur für Werkstoffwissenschaften (Simulation und Werkstoffeigenschaften)


Related Project(s)

Go to first page Go to previous page 2 of 5 Go to next page Go to last page

(Kolbenbolzen für Leichtbau-Design):
KoBoLD: Kolbenbolzen für Leichtbau-Design
PD Dr.-Ing. Heinz Werner Höppel
(01/01/2017 - 31/12/2019)


(In-situ Characterization of Nanomaterials with Electrons, X-rays/Neutrons and Scanning Probes):
B5: Plasticity at interfaces in complex compounds
Prof. Dr. Mathias Göken; Prof. Dr. Erdmann Spiecker
(01/10/2013 - 30/09/2017)


(In-situ Characterization of Nanomaterials with Electrons, X-rays/Neutrons and Scanning Probes):
B2: Adhesion and friction of particles on model surfaces
Prof. Dr. Mathias Göken; Prof. Dr.-Ing. Wolfgang Peukert
(01/10/2013 - 30/09/2017)


(In-situ Characterization of Nanomaterials with Electrons, X-rays/Neutrons and Scanning Probes):
B3: Strength and toughness of interfaces at small scales
Prof. Dr. Mathias Göken
(01/10/2013 - 30/09/2017)


(Exzellenz-Cluster Engineering of Advanced Materials):
EXC315 EAM (A2-3): In-situ nanomechanics and FIB tomography of thin films
Prof. Dr. Mathias Göken
(01/11/2012 - 31/10/2017)



Publications (Download BibTeX)

Go to first page Go to previous page 1 of 20 Go to next page Go to last page

Wang, Y.F., Huang, C.X., Fang, X.T., Höppel, H.W., Göken, M., & Zhu, Y.T. (2020). Hetero-deformation induced (HDI) hardening does not increase linearly with strain gradient. Scripta Materialia, 174, 19-23. https://dx.doi.org/10.1016/j.scriptamat.2019.08.022
Matschkal, D., Kolb, M., Neumeier, S., Gao, S., Hartmaier, A., Durst, K., & Göken, M. (2019). New flat-punch indentation creep testing approach for characterizing the local creep properties at high temperatures. Materials and Design, 183. https://dx.doi.org/10.1016/j.matdes.2019.108090
Bykov, M., Chariton, S., Fei, H., Fedotenko, T., Aprilis, G., Ponomareva, A.V.,... Dubrovinsky, L. (2019). High-pressure synthesis of ultraincompressible hard rhenium nitride pernitride Re2(N2)(N)2 stable at ambient conditions. Nature Communications, 10(1). https://dx.doi.org/10.1038/s41467-019-10995-3
Frydrych, K., Kowalczyk-Gajewska, K., & Prakash, A. (2019). On solution mapping and remeshing in crystal plasticity finite element simulations: application to equal channel angular pressing. Modelling and Simulation in Materials Science and Engineering, 27(7). https://dx.doi.org/10.1088/1361-651X/ab28e3
Vaid, A., Guenole, J., Prakash, A., Korte-Kerzel, S., & Bitzek, E. (2019). Atomistic simulations of basal dislocations in Mg interacting with Mg17Al12 precipitates. Materialia, 7. https://dx.doi.org/10.1016/j.mtla.2019.100355
Glöckel, F., Uggowitzer, P.J., Felfer, P., Pogatscher, S., & Höppel, H.W. (2019). Influence of Zn and Sn on the precipitation behavior of new Al-Mg-Si alloys. Materials, 12(16). https://dx.doi.org/10.3390/ma12162547
Lamm, S., Matschkal, D., Göken, M., & Felfer, P. (2019). Impact of Mn on the precipitate structure and creep resistance of Ca containing magnesium alloys. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 761. https://dx.doi.org/10.1016/j.msea.2019.05.094
Ast, J., Ghidelli, M., Durst, K., Göken, M., Sebastiani, M., & Korsunsky, A.M. (2019). A review of experimental approaches to fracture toughness evaluation at the micro-scale. Materials and Design, 173. https://dx.doi.org/10.1016/j.matdes.2019.107762
Löffl, C., Saage, H., & Göken, M. (2019). In situ X-ray tomography investigation of the crack formation in an intermetallic beta-stabilized TiAl-alloy during a stepwise tensile loading. International Journal of Fatigue, 124, 138-148. https://dx.doi.org/10.1016/j.ijfatigue.2019.02.035
Giese, S., Neumeier, S., Bergholz, J., Naumenko, D., Quadakkers, W.J., Vassen, R., & Göken, M. (2019). Influence of Different Annealing Atmospheres on the Mechanical Properties of Freestanding MCrAlY Bond Coats Investigated by Micro-Tensile Creep Tests. Metals, 9(6). https://dx.doi.org/10.3390/met9060692
Hou, X., Krauß, S., & Merle, B. (2019). Additional grain boundary strengthening in length-scale architectured copper with ultrafine and coarse domains. Scripta Materialia, 165, 55-59. https://dx.doi.org/10.1016/j.scriptamat.2019.02.019
Moretti, P., Renner, J., Safari, A., & Zaiser, M. (2019). Graph theoretical approaches for the characterization of damage in hierarchical materials. European Physical Journal B, 92(5). https://dx.doi.org/10.1140/epjb/e2019-90730-9
Böhm, C., Feldner, P., Merle, B., & Wolf, S. (2019). Conical nanoindentation allows azimuthally independent hardness determination in geological and biogenic minerals. Materials, 12(10). https://dx.doi.org/10.3390/ma12101630
Schreiner, J., Götz-Neunhoeffer, F., Neubauer, J., Bergold, S., Webler, R., Volkmann, S., & Jansen, D. (2019). Advanced Rietveld refinement and SEM analysis of tobermorite in chemically diverse autoclaved aerated concrete. Powder Diffraction. https://dx.doi.org/10.1017/S0885715619000149
Karewar, S., Sietsma, J., & Santofimia, M.J. (2019). Effect of C on the Martensitic Transformation in Fe-C Alloys in the Presence of Pre-Existing Defects: A Molecular Dynamics Study. Crystals, 9(2). https://dx.doi.org/10.3390/cryst9020099
Bresler, J., Neumeier, S., Ziener, M., Pyczak, F., & Göken, M. (2019). The influence of niobium, tantalum and zirconium on the microstructure and creep strength of fully lamellar gamma/alpha(2) titanium aluminides. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 744, 46-53. https://dx.doi.org/10.1016/j.msea.2018.11.152
Martić, N., Reller, C., Macauley, C., Löffler, M., Schmid, B., Reinisch, D.,... Schmid, G. (2019). Paramelaconite-Enriched Copper-Based Material as an Efficient and Robust Catalyst for Electrochemical Carbon Dioxide Reduction. Advanced Energy Materials. https://dx.doi.org/10.1002/aenm.201901228
Merle, B. (2019). Creep behavior of gold thin films investigated by bulge testing at room and elevated temperature. Journal of Materials Research, 34(1), 69-77. https://dx.doi.org/10.1557/jmr.2018.287
Bresler, J., Neumeier, S., Ziener, M., Pyczak, F., & Göken, M. (2019). The influence of niobium, tantalum and zirconium on the microstructure and creep strength of fully lamellar γ/α2 titanium aluminides. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 744, 46-53. https://dx.doi.org/10.1016/j.msea.2018.11.152
Zhou, H., Huang, C., Sha, X., Xiao, L., Ma, X., Höppel, H.W.,... Zhu, Y. (2019). In-situ observation of dislocation dynamics near heterostructured interfaces. Materials Research Letters, 7(9), 376-382. https://dx.doi.org/10.1080/21663831.2019.1616330


Publications in addition (Download BibTeX)

Go to first page Go to previous page 2 of 3 Go to next page Go to last page

Blum, W., & Zeng, X.H. (2011). Corrigendum to “A simple dislocation model of deformation resistance of ultrafine-grained materials explaining Hall-Petch strengthening and enhanced strain rate sensitivity” (Acta Materialia (2009) 57 (1966-1974)). Acta Materialia, 59. https://dx.doi.org/10.1016/j.actamat.2011.05.032
Blum, W., & Zeng, X.H. (2011). Erratum: A simple dislocation model of deformation resistance of ultrafine-grained materials explaining Hall-Petch strengthening and enhanced strain rate sensitivity (Acta Materialia (2009) 57 (1966-1974)). Acta Materialia, 59(15), 6205-6206. https://dx.doi.org/10.1016/j.actamat.2011.05.032
Schneibel, J.H., Heilmaier, M., Blum, W., Hasemann, G., & Shanmugasundaram, T. (2011). Temperature dependence of the strength of fine- and ultrafine-grained materials. Acta Materialia, 59(3), 1300-1308. https://dx.doi.org/10.1016/j.actamat.2010.10.062
Blum, W., Li, Y.J., Zhang, Y., & Wang, J.T. (2011). Deformation resistance in the transition from coarse-grained to ultrafine-grained Cu by severe plastic deformation up to 24 passes of ECAP. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 528(29-30), 8621-8627. https://dx.doi.org/10.1016/j.msea.2011.08.010
Mompiou, F., Legros, M., Caillard, D., & Mughrabi, H. (2010). In situ TEM observations of reverse dislocation motion upon unloading of tensile-deformed UFG aluminium. Journal of Physics : Conference Series, 240. https://dx.doi.org/10.1088/1742-6596/240/1/012137
Weidner, A., Amberger, D., Pyczak, F., Schoenbauer, B., Stanzl-Tschegg, S., & Mughrabi, H. (2010). Fatigue damage in copper polycrystals subjected to ultrahigh-cycle fatigue below the PSB threshold. International Journal of Fatigue, 32(6), 872-878. https://dx.doi.org/10.1016/j.ijfatigue.2009.04.004
Mughrabi, H. (2010). Fatigue, an everlasting materials problem - Still en vogue. Procedia Engineering, 2(1), 3-26. https://dx.doi.org/10.1016/j.proeng.2010.03.003
Blum, W., & Eisenlohr, P. (2010). A simple dislocation model of the influence of high-angle boundaries on the deformation behavior of ultrafine-grained materials. Journal of Physics : Conference Series, 240. https://dx.doi.org/10.1088/1742-6596/240/1/012136
Blum, W. (2009). Role of boundaries in control of deformation rate and strength of crystalline materials. Materials Science Forum, 604-605, 391-401. https://dx.doi.org/10.4028/3-908453-09-7.391
Kumar, P., Kassner, M.E., Blum, W., Eisenlohr, P., & Langdon, T.G. (2009). New observations on high-temperature creep at very low stresses. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 510-511(C), 20-24. https://dx.doi.org/10.1016/j.msea.2008.04.094
Ziegenhain, G., Hartmaier, A., & Urbassek, H.M. (2009). Pair vs many-body potentials: Influence on elastic and plastic behavior in nanoindentation of fcc metals. Journal of the Mechanics and Physics of Solids, 57(9), 1514-1526. https://dx.doi.org/10.1016/j.jmps.2009.05.011
Eisenlohr, P., Blum, W., & Milicka, K. (2009). Dislocation glide velocity in creep of Mg alloys derived from dip tests. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 510-511(C), 393-397. https://dx.doi.org/10.1016/j.msea.2008.04.120
Mughrabi, H. (2009). Microstructural aspects of high temperature deformation of monocrystalline nickel base superalloys: Some open problems. Journal of Materials Science & Technology, 25(2), 191-204. https://dx.doi.org/10.1179/174328408X361436
Boehner, A., Janisch, R., & Hartmaier, A. (2009). Ab initio investigation of diamond coatings on steel. Scripta Materialia, 60(7), 504-507. https://dx.doi.org/10.1016/j.scriptamat.2008.11.042
Mughrabi, H. (2009). Cyclic slip irreversibilities and the evolution of fatigue damage. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 40(4), 431-453. https://dx.doi.org/10.1007/s11663-009-9240-4
Blum, W., & Eisenlohr, P. (2009). Dislocation mechanics of creep. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 510-511(C), 7-13. https://dx.doi.org/10.1016/j.msea.2008.04.110
Broedling, N.C., Hartmaier, A., Buehler, M.J., & Gao, H. (2008). The strength limit in a bio-inspired metallic nanocomposite. Journal of the Mechanics and Physics of Solids, 56(3), 1086-1104. https://dx.doi.org/10.1016/j.jmps.2007.06.006
Higashida, K., Tanaka, M., Hartmaier, A., & Hoshino, Y. (2008). Analyzing crack-tip dislocations and their shielding effect on fracture toughness. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 483-484(1-2 C), 13-18. https://dx.doi.org/10.1016/j.msea.2006.12.174
Broedling, N.C., Hartmaier, A., & Gao, H. (2008). Fracture toughness of layered structures: Embrittlement due to confinement of plasticity. Engineering Fracture Mechanics, 75(12), 3743-3754. https://dx.doi.org/10.1016/j.engfracmech.2007.10.014
Deserno, F. (2000). Diplomarbeit: Verformungswiderstand von TiAlV6 bei mittleren Temperaturen (Diploma thesis).

Last updated on 2019-24-04 at 10:16