Lehrstuhl für Werkstoffwissenschaften (Allgemeine Werkstoffeigenschaften)


Beschreibung:


Der Lehrstuhl WW1 befasst sich mit den unterschiedlichsten Aspekten mechanischer Eigenschaften von strukturellen Werkstoffen und Werkstoffsystemen. Die Untersuchungen der mechanischen Eigenschaften von der Nanoskala bis zur Makroskala werden unter differenzierten Belastungsfällen, wie Hochtemperaturverformung, Ermüdung, Kriechen und Verschleiß, durchgeführt. Die wissenschaftliche Forschung zielt auf eine Erweiterung des Verständnisses der Werkstoffeigenschaften — ausgehend von der Mikrostruktur — ab. Daher werden unterschiedlichste Mikroskopiertechniken von der Elektronen- und Rastersondenmikroskopie bis zu optischen Techniken eingesetzt, um den mikrostrukturellen Aufbau moderner Werkstoffe auf allen Längenskalen abzubilden.

Adresse:
Martensstraße 5/7
91058 Erlangen



Untergeordnete Organisationseinheiten

Juniorprofessor für Werkstoffwissenschaften (3D-Nanoanalytik und Atomsondenmikroskopie)
Juniorprofessur für Werkstoffmikromechanik
Professur für Werkstoffwissenschaften (Simulation und Werkstoffeigenschaften)


Forschungsprojekt(e)

Go to first page Go to previous page 1 von 5 Go to next page Go to last page

HiMat: Eine innovative Prüfmaschine für Heizen, Abschrecken, Ziehen, Drücken und Rissbildungsuntersuchungen von industrierelevanten Hochtemperaturlegierungen
Dr.-Ing. Steffen Neumeier
(01.07.2019 - 30.06.2022)


SPP 2074 Grundlagen für die verbesserte Gebrauchsdauerberechnung feststoffgeschmierter Wälzlager durch Multiskalen-Untersuchungen
PD Dr. habil. Benoit Merle; Prof. Dr. Bernd Meyer; Dr.-Ing. Stephan Tremmel
(01.04.2019 - 31.03.2022)


(In-situ-Mikroskopie mit Elektronen, Röntgenstrahlen und Rastersonden):
GRK1896-B3: Mechanische Eigenschaften und Bruchverhalten von dünnen Schichten
Prof. Dr. Mathias Göken; PD Dr. habil. Benoit Merle
(01.04.2018 - 30.09.2022)


ReguLus: Defekt- und Mikrostrukturen, mechanische Eigenschaften und optimierte Wärmebehandlungsstrategien additiv gefertigter Titanlegierungen für großvolumige Luftfahrtstrukturkomponenten (ReguLus)
Prof. Dr. Mathias Göken; PD Dr.-Ing. Heinz Werner Höppel
(01.01.2018 - 31.12.2021)


(SLM-PROP: Verbundvorhaben TARES 2020):
SLM-PROP: Selective laser melting alloys - Auslegungsrichtlinien und prozessbedingte Werkstoffeigenschaften
Prof. Dr. Mathias Göken; PD Dr.-Ing. Heinz Werner Höppel; Dr.-Ing. Steffen Neumeier
(01.02.2017 - 21.01.2023)



Publikationen (Download BibTeX)

Go to first page Go to previous page 1 von 20 Go to next page Go to last page

Wang, Y.F., Huang, C.X., Fang, X.T., Höppel, H.W., Göken, M., & Zhu, Y.T. (2020). Hetero-deformation induced (HDI) hardening does not increase linearly with strain gradient. Scripta Materialia, 174, 19-23. https://dx.doi.org/10.1016/j.scriptamat.2019.08.022
Matschkal, D., Kolb, M., Neumeier, S., Gao, S., Hartmaier, A., Durst, K., & Göken, M. (2019). New flat-punch indentation creep testing approach for characterizing the local creep properties at high temperatures. Materials and Design, 183. https://dx.doi.org/10.1016/j.matdes.2019.108090
Bykov, M., Chariton, S., Fei, H., Fedotenko, T., Aprilis, G., Ponomareva, A.V.,... Dubrovinsky, L. (2019). High-pressure synthesis of ultraincompressible hard rhenium nitride pernitride Re2(N2)(N)2 stable at ambient conditions. Nature Communications, 10(1). https://dx.doi.org/10.1038/s41467-019-10995-3
Frydrych, K., Kowalczyk-Gajewska, K., & Prakash, A. (2019). On solution mapping and remeshing in crystal plasticity finite element simulations: application to equal channel angular pressing. Modelling and Simulation in Materials Science and Engineering, 27(7). https://dx.doi.org/10.1088/1361-651X/ab28e3
Vaid, A., Guenole, J., Prakash, A., Korte-Kerzel, S., & Bitzek, E. (2019). Atomistic simulations of basal dislocations in Mg interacting with Mg17Al12 precipitates. Materialia, 7. https://dx.doi.org/10.1016/j.mtla.2019.100355
Guillonneau, G., Wheeler, J.M., Wehrs, J., Philippe, L., Baral, P., Höppel, H.W.,... Michler, J. (2019). Determination of the true projected contact area by in situ indentation testing. Journal of Materials Research, 34(16), 2859-2868. https://dx.doi.org/10.1557/jmr.2019.236
Glöckel, F., Uggowitzer, P.J., Felfer, P., Pogatscher, S., & Höppel, H.W. (2019). Influence of Zn and Sn on the precipitation behavior of new Al-Mg-Si alloys. Materials, 12(16). https://dx.doi.org/10.3390/ma12162547
Lamm, S., Matschkal, D., Göken, M., & Felfer, P. (2019). Impact of Mn on the precipitate structure and creep resistance of Ca containing magnesium alloys. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 761. https://dx.doi.org/10.1016/j.msea.2019.05.094
Ast, J., Ghidelli, M., Durst, K., Göken, M., Sebastiani, M., & Korsunsky, A.M. (2019). A review of experimental approaches to fracture toughness evaluation at the micro-scale. Materials and Design, 173. https://dx.doi.org/10.1016/j.matdes.2019.107762
Löffl, C., Saage, H., & Göken, M. (2019). In situ X-ray tomography investigation of the crack formation in an intermetallic beta-stabilized TiAl-alloy during a stepwise tensile loading. International Journal of Fatigue, 124, 138-148. https://dx.doi.org/10.1016/j.ijfatigue.2019.02.035
Giese, S., Neumeier, S., Bergholz, J., Naumenko, D., Quadakkers, W.J., Vassen, R., & Göken, M. (2019). Influence of Different Annealing Atmospheres on the Mechanical Properties of Freestanding MCrAlY Bond Coats Investigated by Micro-Tensile Creep Tests. Metals, 9(6). https://dx.doi.org/10.3390/met9060692
Hou, X., Krauß, S., & Merle, B. (2019). Additional grain boundary strengthening in length-scale architectured copper with ultrafine and coarse domains. Scripta Materialia, 165, 55-59. https://dx.doi.org/10.1016/j.scriptamat.2019.02.019
Moretti, P., Renner, J., Safari, A., & Zaiser, M. (2019). Graph theoretical approaches for the characterization of damage in hierarchical materials. European Physical Journal B, 92(5). https://dx.doi.org/10.1140/epjb/e2019-90730-9
Böhm, C., Feldner, P., Merle, B., & Wolf, S. (2019). Conical nanoindentation allows azimuthally independent hardness determination in geological and biogenic minerals. Materials, 12(10). https://dx.doi.org/10.3390/ma12101630
Schreiner, J., Götz-Neunhoeffer, F., Neubauer, J., Bergold, S., Webler, R., Volkmann, S., & Jansen, D. (2019). Advanced Rietveld refinement and SEM analysis of tobermorite in chemically diverse autoclaved aerated concrete. Powder Diffraction. https://dx.doi.org/10.1017/S0885715619000149
Karewar, S., Sietsma, J., & Santofimia, M.J. (2019). Effect of C on the Martensitic Transformation in Fe-C Alloys in the Presence of Pre-Existing Defects: A Molecular Dynamics Study. Crystals, 9(2). https://dx.doi.org/10.3390/cryst9020099
Bresler, J., Neumeier, S., Ziener, M., Pyczak, F., & Göken, M. (2019). The influence of niobium, tantalum and zirconium on the microstructure and creep strength of fully lamellar gamma/alpha(2) titanium aluminides. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 744, 46-53. https://dx.doi.org/10.1016/j.msea.2018.11.152
Weiser, M., Galetz, M.C., Zschau, H.E., Zenk, C., Neumeier, S., Göken, M., & Virtanen, S. (2019). Influence of Co to Ni ratio in γ′-strengthened model alloys on oxidation resistance and the efficacy of the halogen effect at 900 °C. Corrosion Science. https://dx.doi.org/10.1016/j.corsci.2019.05.007
Merle, B. (2019). Creep behavior of gold thin films investigated by bulge testing at room and elevated temperature. Journal of Materials Research, 34(1), 69-77. https://dx.doi.org/10.1557/jmr.2018.287
Schunk, C., Nitschky, M., Höppel, H.W., & Göken, M. (2019). Superior Mechanical Properties of Aluminum-Titanium Laminates in Terms of Local Hardness and Strength. Advanced Engineering Materials, 21(1). https://dx.doi.org/10.1002/adem.201800546


Zusätzliche Publikationen (Download BibTeX)

Go to first page Go to previous page 1 von 3 Go to next page Go to last page

Mughrabi, H. (2016). The a-factor in the Taylor flow-stress law in monotonic, cyclic and quasi stationary deformations: Dependence on slip mode, dislocation arrangement and density. Current Opinion in Solid State & Materials Science. https://dx.doi.org/10.1016/j.cossms.2016.07.001
Blum, W., Eisenlohr, P., & Hu, J. (2016). Interpretation of unloading tests on nanocrystalline Cu in terms of two mechanisms of deformation. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 665, 171-174. https://dx.doi.org/10.1016/j.msea.2016.04.013
Antolovich, S.D., & Mughrabi, H. (2016). In Memoriam Claude Bathias 1938–2015. International Journal of Fatigue, 93, 215-215. https://dx.doi.org/10.1016/j.ijfatigue.2016.03.007
Mughrabi, H., & Antolovich, S.D. (2016). A tribute to Claude Bathias – Highlights of his pioneering work in Gigacycle Fatigue. International Journal of Fatigue, 93, 217-223. https://dx.doi.org/10.1016/j.ijfatigue.2016.04.020
Favier, V., Blanche, A., Wang, C., Ngoc Lam Phung, ., Ranc, N., Wagner, D.,... Mughrabi, H. (2016). Very high cycle fatigue for single phase ductile materials: Comparison between α-iron, copper and α-brass polycrystals. International Journal of Fatigue, 93, 326-338. https://dx.doi.org/10.1016/j.ijfatigue.2016.05.034
Blum, W., Dvorak, J., Kral, P., Eisenlohr, P., & Sklenicka, V. (2015). Correct Interpretation of Creep Rates: A Case Study of Cu. Journal of Materials Science & Technology, 31, 1065-1068. https://dx.doi.org/10.1016/j.jmst.2015.09.012
Mughrabi, H. (2015). Microstructural mechanisms of cyclic deformation, fatigue crack initiation and early crack growth. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 373(2038). https://dx.doi.org/10.1098/rsta.2014.0132
Blum, W., Dvorak, J., Kral, P., Petrenec, M., Eisenlohr, P., & Sklenicka, V. (2015). In situ study of microstructure and strength of severely predeformed pure Cu in deformation at 573K. Philosophical Magazine, 95, 3696-3711. https://dx.doi.org/10.1080/14786435.2015.1096025
Sun, Z., Van Petegem, S., Cervellino, A., Durst, K., Blum, W., & Van Swygenhoven, H. (2015). Dynamic recovery in nanocrystalline Ni. Acta Materialia, 91, 91-100. https://dx.doi.org/10.1016/j.actamat.2015.03.033
Blum, W., Dvorak, J., Kral, P., Eisenlohr, P., & Sklenicka, V. (2014). Effect of grain refinement by ECAP on creep of pure Cu. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 590, 423-432. https://dx.doi.org/10.1016/j.msea.2013.10.022
Blum, W., Dvorak, J., Kral, P., Eisenlohr, P., & Sklenicka, V. (2014). What is "stationary" deformation of pure Cu? Journal of Materials Science, 49(8), 2987-2997. https://dx.doi.org/10.1007/s10853-013-7983-4
Mughrabi, H. (2014). The importance of sign and magnitude of γ/γ′ lattice misfit in superalloys - With special reference to the new γ′-hardened cobalt-base superalloys. Acta Materialia, 81, 21-29. https://dx.doi.org/10.1016/j.actamat.2014.08.005
Mughrabi, H. (2014). Comment on 'Constant intermittent flow of dislocations: Central problems in plasticity' by L. M. Brown. Journal of Materials Science & Technology, 30(1), 123-126. https://dx.doi.org/10.1179/1743284713Y.0000000224
Phung, N.L., Favier, V., Ranc, N., Vales, F., & Mughrabi, H. (2014). Very high cycle fatigue of copper: Evolution, morphology and locations of surface slip markings. International Journal of Fatigue, 63, 68-77. https://dx.doi.org/10.1016/j.ijfatigue.2014.01.007
Mughrabi, H. (2013). Microstructural fatigue mechanisms: Cyclic slip irreversibility, crack initiation, non-linear elastic damage analysis. International Journal of Fatigue, 57, 2-8. https://dx.doi.org/10.1016/j.ijfatigue.2012.06.007
Rahim, M., Frenzel, J., Frotscher, M., Pfetzing-Micklich, J., Steegmueller, R., Wohlschloegel, M.,... Eggeler, G. (2013). Impurity levels and fatigue lives of pseudoelastic NiTi shape memory alloys. Acta Materialia, 61(10), 3667-3686. https://dx.doi.org/10.1016/j.actamat.2013.02.054
Mughrabi, H. (2013). Cyclic strain rate effects in fatigued face-centred and body-centred cubic metals. Philosophical Magazine, 93(28-30), 3821-3834. https://dx.doi.org/10.1080/14786435.2013.779396
Mughrabi, H. (2013). Damage mechanisms and fatigue lives: From the low to the very high cycle regime. Procedia Engineering, 55, 636-644. https://dx.doi.org/10.1016/j.proeng.2013.03.307
Mompiou, F., Caillard, D., Legros, M., & Mughrabi, H. (2012). In situ TEM observations of reverse dislocation motion upon unloading in tensile-deformed UFG aluminium. Acta Materialia, 60(8), 3402-3414. https://dx.doi.org/10.1016/j.actamat.2012.02.049
Blum, W., & Eisenlohr, P. (2011). Structure evolution and deformation resistance in production and application of ultrafine-grained materials - The concept of steady-state grains. Materials Science Forum, 683, 163-181. https://dx.doi.org/10.4028/www.scientific.net/MSF.683.163

Zuletzt aktualisiert 2019-24-04 um 10:16