Lehrstuhl für Angewandte Mathematik (Wissenschaftliches Rechnen)

Adresse:
Cauerstraße 11
91058 Erlangen



Untergeordnete Organisationseinheiten

Professur für Angewandte Mathematik (Wissenschaftliches Rechnen)


Forschungsbereiche

Adaptive Finite-Elemente
Bildverarbeitung
Entwicklung wissenschaftlicher Software
Funktionenräume
Grenzflächen
Strömungsberechnung


Forschungsprojekt(e)


Besov Regularität von parabolischen partiellen Differentialgleichungen auf Lipschitz Gebieten
Dr. Cornelia Schneider
(01.04.2017 - 31.03.2019)


Distributed High Performance Computing in Common Lisp
Prof. Dr. Eberhard Bänsch; PD Dr. Nicolas Neuß
(01.10.2015 - 31.03.2016)


Implementierung und Optimierung von Stencil-Operationen auf gestaffelten hierarchischen Gittern
Prof. Dr. Eberhard Bänsch; PD Dr. Nicolas Neuß
(01.06.2013 - 01.10.2014)


(SPP 1506: Fluide Grenzflächen):
Higher order time discretization for free surface flows (SPP 1506)
Prof. Dr. Eberhard Bänsch
(01.04.2010 - 30.04.2013)



Publikationen (Download BibTeX)

Go to first page Go to previous page 2 von 7 Go to next page Go to last page

Bänsch, E., Krahl, R., & Basting, S. (2015). NUMERICAL SIMULATION OF TWO-PHASE FLOWS WITH HEAT AND MASS TRANSFER. Discrete and Continuous Dynamical Systems, 35(6), 2325-2347. https://dx.doi.org/10.3934/dcds.2015.35.2325
Prignitz, R., & Bänsch, E. (2014). Particulate flows with the subspace projection method. Journal of Computational Physics, 260, 249-272. https://dx.doi.org/10.1016/j.jcp.2013.12.030
Bänsch, E., Benner, P., Saak, J., & Weichelt, H.K. (2014). Riccati-based boundary feedback stabilization of incompressible Navier-Stokes flows. SIAM Journal on Scientific Computing, 37(2), 832-858. https://dx.doi.org/10.1137/140980016
Fried, M. (2014). Mathematik für Ingenieure I für Dummies. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
Kulev, N., Basting, S., Bänsch, E., & Dreyer, M. (2014). Interface reorientation of cryogenic liquids under non-isothermal boundary conditions. Cryogenics, 62, 48-59. https://dx.doi.org/10.1016/j.cryogenics.2014.04.006
Bänsch, E., Lee, G., & Reismann, S. (2014). Numerical Solution for 5-Layer Laminate Technique to determine Saturation Solubility of a Drug in a Thin Film of Pressure Sensitive Adhesive. Pharmaceutical Development and Technology, 19(5), 634-640. https://dx.doi.org/10.3109/10837450.2013.819016
Brenner, A., Bänsch, E., & Bause, M. (2014). A priori error analysis for finite element approximations of the Stokes problem on dynamic meshes. IMA Journal of Numerical Analysis, 34(1), 123-146. https://dx.doi.org/10.1093/imanum/drt001
Bänsch, E. (2014). A finite element pressure correction scheme for the Navier-Stokes equations with traction boundary condition. Computer Methods in Applied Mechanics and Engineering, 279, 198-211. https://dx.doi.org/10.1016/j.cma.2014.06.030
Schneider, C., Neves, J.S., & Moura, S.D. (2014). Spaces of generalized smoothness in the critical case: optimal embeddings, continuity envelopes and approximation numbers. Journal of Approximation Theory, 187, 82--117. https://dx.doi.org/10.1016/j.jat.2014.07.010
Bänsch, E., Basting, S., & Krahl, R. (2014). Numerical simulation of two-phase flows with heat- and mass transfer. Discrete and Continuous Dynamical Systems, 35(6), 2325-2347. https://dx.doi.org/10.3934/dcds.2015.35.2325
Schneider, C., & Große, N. (2013). Sobolev spaces on Riemannian manifolds with bounded geometry: general coordinates and traces. Mathematische Nachrichten, 286(16), 1586--1613. https://dx.doi.org/10.1002/mana.201300007
Bänsch, E., Karakatsani, F., & Makridakis, C. (2013). The effect of mesh modification in time on the error control of fully discrete approximations for parabolic equations. Applied Numerical Mathematics, 67, 35-63. https://dx.doi.org/10.1016/j.apnum.2011.08.008
Bäumler, K., & Bänsch, E. (2013). A subspace projection method for the implementation of interface conditions in a single-drop flow problem. Journal of Computational Physics, 252, 438-457. https://dx.doi.org/10.1016/j.jcp.2013.06.024
Schneider, C., & Vybíral, J. (2013). Non-smooth atomic decompositions, traces on Lipschitz domains, and pointwise multipliers in function spaces. Journal of Functional Analysis, 264(5), 1197--1237. https://dx.doi.org/10.1016/j.jfa.2012.12.005
Fried, M. (2013). Mathematik für Ingenieure II für Dummies. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
Schneider, C., Moura, S.D., & Neves, J.S. (2013). On trace spaces of 2-microlocal Besov spaces with variable integrability. Mathematische Nachrichten, 286(11-12), 1240--1254. https://dx.doi.org/10.1002/mana.201200092
Peschka, D., Schmidt, J., Wagner, B., Bänsch, E., Münch, A., Peukert, W., & Prignitz, R. (2012). Conductivity in nonpolar media: Experimental and numerical studies on sodium AOT-hexadecane, lecithin-hexadecane and aluminum(III)-3,5-diisopropyl salicylate-hexadecane systems. Journal of Colloid S+D12486cience, 386(1), 240-251. https://dx.doi.org/10.1016/j.jcis.2012.07.051
Bänsch, E., Kaltenbacher, M., Leugering, G., Schury, F., & Wein, F. (2012). Optimization of electro-mechanical smart structures. In Günter Leugering, Sebastian Engell, Andreas Griewank, Michael Hinze, Rolf Rannacher, Volker Schulz, Michael Ulbrich, Stefan Ulbrich, (Eds.), Constrained Optimization and Optimal Control for Partial Differential Equations. (pp. 501-519). Basel: Birkhäuser/ Springer Basel AG.
Bause, M., Brunner, F., Knabner, P., & Radu, A.F. (2012). An Improved Optimal Order Mixed Finite Element Method for Semilinear Transport Problems. In Andrea Cangiani, Ruslan L. Davidchack, Emmanuil Georgoulis, Alexander N. Gorban, Jeremy Levesley, Michael V. Tretyakov (Eds.), Numerical Mathematics and Advanced Applications 2011. (pp. 247-255). Berlin Heidelberg: Springer.
Krahl, R., & Bänsch, E. (2012). On the stability of an evaporating liquid surface. Fluid Dynamics Research, 44(3), 0314019. https://dx.doi.org/10.1088/0169-5983/44/3/031409

Zuletzt aktualisiert 2019-11-07 um 23:51