Lehrstuhl für Angewandte Mathematik

Address:
Cauerstraße 11
91058 Erlangen



Subordinate Organisational Units

Professur für Angewandte Mathematik (Wissenschaftliches Rechnen)


Research Fields

Adaptive Finite Elements
Computational Fluid dynamics
Development of scientific software
Function spaces
Image processing
Interface problems


Related Project(s)


Besov regularity of parabolic partial differential equations on Lipschitz domains
Dr. Cornelia Schneider
(01/04/2017 - 31/03/2019)


Verteiltes Höchstleistungsrechnen in Common Lisp
Prof. Dr. Eberhard Bänsch; PD Dr. Nicolas Neuß
(01/10/2015 - 31/03/2016)


Implementation and optimization of stencil operations on staggered hierarchical meshes
Prof. Dr. Eberhard Bänsch; PD Dr. Nicolas Neuß
(01/06/2013 - 01/10/2014)


(SPP 1506: Fluide Grenzflächen):
Higher order time discretization for free surface flows (SPP 1506)
Prof. Dr. Eberhard Bänsch
(01/04/2010 - 30/04/2013)



Publications (Download BibTeX)

Go to first page Go to previous page 1 of 7 Go to next page Go to last page

Dahlke, S., Jahan, Q., Schneider, C., Steidl, G., & Teschke, G. (2019). Traces of shearlet coorbit spaces on domains. Applied Mathematics Letters, 91, 35-40. https://dx.doi.org/10.1016/j.aml.2018.11.019
Grosse, N., & Schneider, C. (2019). Symmetries on manifolds: generalizations of the radial lemma of Strauss. Revista Matematica Complutense, 32(2), 365-393. https://dx.doi.org/10.1007/s13163-018-0285-2
Moura, S., Neves, J., & Schneider, C. (2019). Traces and extensions of generalized smoothness Morrey spaces on domains. Nonlinear Analysis - Theory Methods & Applications, 181, 311-339. https://dx.doi.org/10.1016/j.na.2019.01.003
Dahlke, S., & Schneider, C. (2019). Besov regularity of parabolic and hyperbolic PDEs. Analysis and Applications, 17(2), 235-291. https://dx.doi.org/10.1142/S0219530518500306
Bänsch, E. (2019). A thermodynamically consistent model for convective transport in nanofluids: existence of weak solutions and fem computations. Journal of Mathematical Analysis and Applications. https://dx.doi.org/10.1016/j.jmaa.2019.04.002
Bänsch, E., Karakatsani, F., & Makridakis, C. (2018). A posteriori error estimates for fully discrete schemes for the time dependent Stokes problem. Calcolo, 55(2). https://dx.doi.org/10.1007/s10092-018-0259-2
Bänsch, E., & Götz, M. (2018). Numerical study of droplet evaporation in an acoustic levitator. Physics of Fluids, 30(3). https://dx.doi.org/10.1063/1.5017936
Fried, M., Aizinger, V., & Bungert, L. (2018). Comparison of two local discontinuous Galerkin formulations for the subjective surfaces problem. Computing and Visualization in Science. https://dx.doi.org/10.1007/s00791-018-0291-4
Fried, M. (2018). Übungsbuch Mathematik für Ingenieure für Dummies. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
Himmelsbach, D., Neuss-Radu, M., & Neuß, N. (2018). Mathematical modelling and analysis of nanoparticle gradients induced by magnetic fields. Journal of Mathematical Analysis and Applications, 461(2), 1544-1560. https://dx.doi.org/10.1016/j.jmaa.2017.12.026
Fried, M. (2018). Mathematik für Ingenieure I für Dummies. Weinheim: Wiley-VCH Verlag GmbG & Co. KGaA.
Bänsch, E., & Basting, S. (2017). PRECONDITIONERS FOR THE DISCONTINUOUS GALERKIN TIME-STEPPING METHOD OF ARBITRARY ORDER. Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique Et Analyse Numerique, 51(4), 1173-1195. https://dx.doi.org/10.1051/m2an/2016055
Werner, S., Stingl, M., & Leugering, G. (2017). Model-based control of dynamic frictional contact problems using the example of hot rolling. Computer Methods in Applied Mechanics and Engineering, 319, 442-471. https://dx.doi.org/10.1016/j.cma.2017.03.006
Werner, S., Kurz, M., Stingl, M., & Doell, R. (2017). Model-Based Optimization of Short Stroke Control in Roughing Mills. Steel Research International, 88(12). https://dx.doi.org/10.1002/srin.201700220
Bungert, L., Aizinger, V., & Fried, M. (2016). A Discontinuous Galerkin Method for the Subjective Surfaces Problem. Journal of Mathematical Imaging and Vision, in press. https://dx.doi.org/10.1007/s10851-016-0695-z
Bänsch, E., & Brenner, A. (2016). A POSTERIORI ERROR ESTIMATES FOR PRESSURE-CORRECTION SCHEMES. SIAM Journal on Numerical Analysis, 54(4), 2323-2358. https://dx.doi.org/10.1137/15M102753X
Büchs, D., Ditter, D., Henselmann, K., Hering, J., & Götz, M. (2016). Directors' Dealings am deutschen Kapitalmarkt. Zeitschrift für Corporate Governance, 3, 101-106.
Bänsch, E., Basting, S., Fuhrmann, E., & Dreyer, M. (2016). Free surface deformation and heat transfer by thermocapillary convection. Heat and Mass Transfer, 52(4), 855-876. https://dx.doi.org/10.1007/s00231-015-1600-9
Bänsch, E., Krahl, R., & Basting, S. (2015). NUMERICAL SIMULATION OF TWO-PHASE FLOWS WITH HEAT AND MASS TRANSFER. Discrete and Continuous Dynamical Systems, 35(6), 2325-2347. https://dx.doi.org/10.3934/dcds.2015.35.2325
Bänsch, E. (2014). A finite element pressure correction scheme for the Navier-Stokes equations with traction boundary condition. Computer Methods in Applied Mechanics and Engineering, 279, 198-211. https://dx.doi.org/10.1016/j.cma.2014.06.030

Last updated on 2019-24-04 at 10:22