Professur für Theoretische Physik

Address:
Staudtstraße 7
91058 Erlangen


Publications (Download BibTeX)

Go to first page Go to previous page 1 of 2 Go to next page Go to last page

Fahn, M.J., Giesel, K., & Kobler, M. (2019). Dynamical properties of the Mukhanov-Sasaki hamiltonian in the context of adiabatic vacua and the Lewis-Riesenfeld invariant. Universe, 5(7). https://dx.doi.org/10.3390/universe5070170
Giesel, K., & Vetter, A. (2019). Reduced loop quantization with four Klein-Gordon scalar fields as reference matter. Classical and Quantum Gravity, 36(14). https://dx.doi.org/10.1088/1361-6382/ab26f4
Giesel, K., Singh, P., & Winnekens, D. (2019). Dynamics of Dirac observables in canonical cosmological perturbation theory. Classical and Quantum Gravity, 36(8), 085009. https://dx.doi.org/10.1088/1361-6382/ab0ed3
Janeš, J.A., Schmidt, D., Blackwell, R., Seifert, U., & Smith, A.-S. (2019). Statistical Mechanics of an Elastically Pinned Membrane: Equilibrium Dynamics and Power Spectrum. Biophysical Journal. https://dx.doi.org/10.1016/j.bpj.2019.06.036
Giesel, K., Herzog, A., & Singh, P. (2018). Gauge invariant variables for cosmological perturbation theory using geometrical clocks. Classical and Quantum Gravity, 35(15), 155012. https://dx.doi.org/10.1088/1361-6382/aacda2
Kobler, M., & Giesel, K. (2018). Dynamical Properties of the Mukhanov-Sasaki Hamiltonian (Master thesis).
Zwicknagel, E.-A., Giesel, K., & Liegener, K. (2018). Expectation Values of Holonomy-Operators in Cosmological Coherent States for Loop Quantum Gravity (Bachelor thesis).
Weigl, S., Giesel, K., & Liegener, K. (2018). Implications from Different Regularisations for the Canonically Quantised k=1 FLRW Spacetime (Bachelor thesis).
Matas, B., Giesel, K., & Kobler, M. (2018). The Lewis-Riesenfeld Invariant in the context of a Loop Quantum Cosmology quantisation (Bachelor thesis).
Giesel, K., & Herzog, A. (2018). Gauge invariant canonical cosmological perturbation theory with geometrical clocks in extended phase-space - A review and applications. International Journal of Modern Physics D, 27(8), 1830005. https://dx.doi.org/10.1142/S0218271818300057
Leitherer, A., & Giesel, K. (2017). The Schrödinger Equation of the Gowdy Model in Reduced Algebraic Quantum Gravity (Master thesis).
Herzog, A., & Giesel, K. (2017). Geometrical Clocks in Cosmological Perturbation Theory (Master thesis).
Giesel, K., Laddha, A., Varadarajan, M., Bianchi, E., Oriti, D., Dittrich, B.,... Grain, J. (2017). Loop Quantum Gravity. The first 30 years. World Scientific.
Giesel, K., & Oelmann, A. (2017). Comparison Between Dirac and Reduced Quantization in LQG-Models with Klein-Gordon Scalar Fields. Acta Physica Polonica B, Acta Phys.Polon.Supp.(10), 339-349.
Giesel, K., & Thiemann, T. (2015). Scalar material reference systems and loop quantum gravity. Classical and Quantum Gravity, 32(13). https://dx.doi.org/10.1088/0264-9381/32/13/135015
Han, Y., Giesel, K., & Ma, Y. (2015). Manifestly gauge invariant perturbations of scalar-tensor theories of gravity. Classical and Quantum Gravity, 32(13). https://dx.doi.org/10.1088/0264-9381/32/13/135006
Alex, N., & Giesel, K. (2015). Algebraic Loop Quantisation of the Gowdy Model: The Master Constraint (Master thesis).
Böhm, B., & Giesel, K. (2015). The Physical Hamiltonian of the Gowdy Model in Algebraic Quantum Gravity (Master thesis).
Winnekens, D., & Giesel, K. (2014). Semiclassical Perturbation Theory within Loop Quantum Gravity (Master thesis).
Giesel, K., & Herzog, A. (2014). Lie-Punktsymmetrien erhaltende Quantisierung in der Loop-Quantenkosmologie (Bachelor thesis).

Last updated on 2019-24-04 at 10:27