Professur für Theoretische Physik

Staudtstraße 7
91058 Erlangen

Publikationen (Download BibTeX)

Go to first page Go to previous page 1 von 2 Go to next page Go to last page

Giesel, K., Herzog, A., & Singh, P. (2018). Gauge invariant variables for cosmological perturbation theory using geometrical clocks. Classical and Quantum Gravity, 35(15), 155012.
Kobler, M., & Giesel, K. (2018). Dynamical Properties of the Mukhanov-Sasaki Hamiltonian (Master thesis).
Giesel, K., & Herzog, A. (2018). Gauge invariant canonical cosmological perturbation theory with geometrical clocks in extended phase-space - A review and applications. International Journal of Modern Physics D, 27(8), 1830005.
Herzog, A., & Giesel, K. (2017). Geometrical Clocks in Cosmological Perturbation Theory (Master thesis).
Leitherer, A., & Giesel, K. (2017). The Schrödinger Equation of the Gowdy Model in Reduced Algebraic Quantum Gravity (Master thesis).
Giesel, K., & Oelmann, A. (2017). Comparison Between Dirac and Reduced Quantization in LQG-Models with Klein-Gordon Scalar Fields. Acta Physica Polonica B, Acta Phys.Polon.Supp.(10), 339-349.
Giesel, K., Laddha, A., Varadarajan, M., Bianchi, E., Oriti, D., Dittrich, B.,... Grain, J. (2017). Loop Quantum Gravity. The first 30 years. World Scientific.
Han, Y., Giesel, K., & Ma, Y. (2015). Manifestly gauge invariant perturbations of scalar-tensor theories of gravity. Classical and Quantum Gravity, 32(13).
Giesel, K., & Thiemann, T. (2015). Scalar material reference systems and loop quantum gravity. Classical and Quantum Gravity, 32(13).
Alex, N., & Giesel, K. (2015). Algebraic Loop Quantisation of the Gowdy Model: The Master Constraint (Master thesis).
Böhm, B., & Giesel, K. (2015). The Physical Hamiltonian of the Gowdy Model in Algebraic Quantum Gravity (Master thesis).
Winnekens, D., & Giesel, K. (2014). Semiclassical Perturbation Theory within Loop Quantum Gravity (Master thesis).
Giesel, K., & Herzog, A. (2014). Lie-Punktsymmetrien erhaltende Quantisierung in der Loop-Quantenkosmologie (Bachelor thesis).
Reichert, T., & Giesel, K. (2013). Quantum Mechanics in the Polymer Particle Representation (Master thesis).
Zilker, T., & Giesel, K. (2013). Manifestly Gauge Invariant Cosmological Perturbation Theory (Master thesis).
Zöbelein, C., & Giesel, K. (2013). Dirac-Observablen in der Kosmolgie (Bachelor thesis).
Giesel, K., Schuller, F., Witte, C., & Wolfarth, M. (2012). Gravitational dynamics for all tensorial spacetimes carrying predictive, interpretable, and quantizable matter. Physical Review D, 85(10).
Giesel, K., & Sahlmann, H. (2011). From Classical To Quantum Gravity: Introduction to Loop Quantum Gravity. PoS - Proceedings of Science, C11-02-28, 55.
Giesel, K., Domagala, M., Kaminski, W., & Lewandowski, J. (2010). Gravity quantized: Loop quantum gravity with a scalar field. Physical Review D, 82(10).
Giesel, K., & Thiemann, T. (2010). Algebraic quantum gravity (AQG): IV. Reduced phase space quantization of loop quantum gravity. Classical and Quantum Gravity, 27(17).

Zuletzt aktualisiert 2016-05-05 um 04:58