Lehrstuhl für Theoretische Physik

Adresse:
Staudtstraße 7
91058 Erlangen



Untergeordnete Organisationseinheiten

Professur für Theoretische Physik
Professur für Theoretische Physik
Professur für Theoretische Physik


Forschungsbereiche

Allgemeine Relativitätstheorie und Alternative Theorien der Gravitation
Eichtheorien
Hochenergiephysik und Astroteilchenphysik
Kosmologie
Mathematische Physik
Quantenfeldtheorie
Quantengravitation


Publikationen (Download BibTeX)

Go to first page Go to previous page 7 von 8 Go to next page Go to last page

Thiemann, T. (1998). Quantum spin dynamics (QSD): IV. 2+1 Euclidean quantum gravity as a model to test 3+1 Lorentzian quantum gravity. Classical and Quantum Gravity, 15(5), 1249-1280.
Thiemann, T. (1998). Quantum spin dynamics (QSD): III. Quantum constraint algebra and physical scalar product in quantum general relativity. Classical and Quantum Gravity, 15(5), 1207-1247.
Thiemann, T. (1998). Quantum spin dynamics (QSD): V. Quantum gravity as the natural regulator of the Hamiltonian constraint of matter quantum field theories. Classical and Quantum Gravity, 15(5), 1281-1314.
Thiemann, T. (1998). Quantum spin dynamics (QSD). Classical and Quantum Gravity, 15(4), 839-873.
Thiemann, T. (1998). Quantum spin dynamics (QSD): II. The kernel of the Wheeler-DeWitt constraint operator. Classical and Quantum Gravity, 15(4), 875-905.
Thiemann, T. (1998). The inverse loop transform. Journal of Mathematical Physics, 39(2), 1236-1248.
Thiemann, T., & Rovelli, C. (1998). Immirzi parameter in quantum general relativity. Physical Review D, 57(2), 1009-1014.
Ashtekar, A., Lewandowski, J., Marolf, D., Mourao, J.M., & Thiemann, T. (1997). SU(N) quantum Yang-Mills theory in two dimensions: A complete solution. Journal of Mathematical Physics, 38(11), 5453-5482.
Marolf, D., Mourao, J.M., & Thiemann, T. (1997). The status of diffeomorphism superselection in euclidean 2+1 gravity. Journal of Mathematical Physics, 38(9), 4730-4740.
Thiemann, T. (1996). Anomaly-free formulation of non-perturbative, four-dimensional Lorentzian quantum gravity. Physics Letters B, 380(3-4), 257-264.
Thiemann, T. (1996). Reality conditions inducing transforms for quantum gauge field theory and quantum gravity. Classical and Quantum Gravity, 13(6), 1383-1403.
Ashtekar, A., Lewandowski, J., Marolf, D., Mourao, J.M., & Thiemann, T. (1996). Coherent state transforms for spaces of connections. Journal of Functional Analysis, 135(2), 519-551.
Ashtekar, A., Lewandowski, J., Marolf, D., Mourao, J.M., & Thiemann, T. (1995). QUANTIZATION OF DIFFEOMORPHISM INVARIANT THEORIES OF CONNECTIONS WITH LOCAL DEGREES OF FREEDOM. Journal of Mathematical Physics, 36(11), 6456-6493.
Thiemann, T. (1995). THE REDUCED PHASE-SPACE OF SPHERICALLY SYMMETRICAL EINSTEIN-MAXWELL THEORY INCLUDING A COSMOLOGICAL CONSTANT. Nuclear Physics B, 436(3), 681-720.
Ashtekar, A., Lewandowski, J., Marolf, D., Mourao, J.M., & Thiemann, T. (1995). A manifestly gauge-invariant approach to quantum theories of gauge fields. (pp. 60-86).
Thiemann, T. (1995). GENERALIZED BOUNDARY-CONDITIONS FOR GENERAL-RELATIVITY FOR THE ASYMPTOTICALLY FIAT CASE IN TERMS OF ASHTEKARS VARIABLES. Classical and Quantum Gravity, 12(1), 181-198.
Thiemann, T. (1995). COMPLETE QUANTIZATION OF A DIFFEOMORPHISM INVARIANT FIELD-THEORY. Classical and Quantum Gravity, 12(1), 59-88.
Kastrup, H., & Thiemann, T. (1995). Spherically symmetric gravity and the notion of time in General Relativity. (pp. 158-172).
Kastrup, H., & Thiemann, T. (1994). SPHERICALLY SYMMETRICAL GRAVITY AS A COMPLETELY INTEGRABLE SYSTEM. Nuclear Physics B, 425(3), 665-686.
Thiemann, T. (1994). REDUCED PHASE-SPACE QUANTIZATION OF SPHERICALLY SYMMETRICAL EINSTEIN-MAXWELL THEORY INCLUDING A COSMOLOGICAL CONSTANT. (pp. 293-298). WORLD SCIENTIFIC PUBL CO PTE LTD.


Zusätzliche Publikationen (Download BibTeX)


Herzog, A., & Giesel, K. (2017). Geometrical Clocks in Cosmological Perturbation Theory (Master thesis).

Zuletzt aktualisiert 2016-05-05 um 04:59