Lehrstuhl für Theoretische Physik

Adresse:
Staudtstraße 7
91058 Erlangen



Untergeordnete Organisationseinheiten

Professur für Theoretische Physik
Professur für Theoretische Physik
Professur für Theoretische Physik


Forschungsbereiche

Allgemeine Relativitätstheorie und Alternative Theorien der Gravitation
Eichtheorien
Hochenergiephysik und Astroteilchenphysik
Kosmologie
Mathematische Physik
Quantenfeldtheorie
Quantengravitation


Publikationen (Download BibTeX)

Go to first page Go to previous page 7 von 8 Go to next page Go to last page

Montesinos, M., Rovelli, C., & Thiemann, T. (1999). SL(2,R) model with two Hamiltonian constraints. Physical Review D, 60(4).
Lewandowski, J., & Thiemann, T. (1999). Diffeomorphism-invariant quantum field theories of connections in terms of webs. Classical and Quantum Gravity, 16(7), 2299-2322.
Mourao, J.M., Thiemann, T., & Velhinho, J. (1999). Physical properties of quantum field theory measures. Journal of Mathematical Physics, 40(5), 2337-2353.
Thiemann, T. (1998). Quantum spin dynamics (QSD): VI. Quantum Poincare algebra and a quantum positivity of energy theorem for canonical quantum gravity. Classical and Quantum Gravity, 15(6), 1463-1485.
Thiemann, T. (1998). Kinematical Hilbert spaces for fermionic and Higgs quantum field theories. Classical and Quantum Gravity, 15(6), 1487-1512.
Thiemann, T. (1998). Closed formula for the matrix elements of the volume operator in canonical quantum gravity. Journal of Mathematical Physics, 39(6), 3347-3371.
Thiemann, T. (1998). A length operator for canonical quantum gravity. Journal of Mathematical Physics, 39(6), 3372-3392.
Thiemann, T. (1998). Quantum spin dynamics (QSD): III. Quantum constraint algebra and physical scalar product in quantum general relativity. Classical and Quantum Gravity, 15(5), 1207-1247.
Thiemann, T. (1998). Quantum spin dynamics (QSD): V. Quantum gravity as the natural regulator of the Hamiltonian constraint of matter quantum field theories. Classical and Quantum Gravity, 15(5), 1281-1314.
Thiemann, T. (1998). Quantum spin dynamics (QSD): IV. 2+1 Euclidean quantum gravity as a model to test 3+1 Lorentzian quantum gravity. Classical and Quantum Gravity, 15(5), 1249-1280.
Thiemann, T. (1998). Quantum spin dynamics (QSD). Classical and Quantum Gravity, 15(4), 839-873.
Thiemann, T. (1998). Quantum spin dynamics (QSD): II. The kernel of the Wheeler-DeWitt constraint operator. Classical and Quantum Gravity, 15(4), 875-905.
Thiemann, T. (1998). The inverse loop transform. Journal of Mathematical Physics, 39(2), 1236-1248.
Thiemann, T., & Rovelli, C. (1998). Immirzi parameter in quantum general relativity. Physical Review D, 57(2), 1009-1014.
Ashtekar, A., Lewandowski, J., Marolf, D., Mourao, J.M., & Thiemann, T. (1997). SU(N) quantum Yang-Mills theory in two dimensions: A complete solution. Journal of Mathematical Physics, 38(11), 5453-5482.
Marolf, D., Mourao, J.M., & Thiemann, T. (1997). The status of diffeomorphism superselection in euclidean 2+1 gravity. Journal of Mathematical Physics, 38(9), 4730-4740.
Thiemann, T. (1996). Anomaly-free formulation of non-perturbative, four-dimensional Lorentzian quantum gravity. Physics Letters B, 380(3-4), 257-264.
Thiemann, T. (1996). Reality conditions inducing transforms for quantum gauge field theory and quantum gravity. Classical and Quantum Gravity, 13(6), 1383-1403.
Ashtekar, A., Lewandowski, J., Marolf, D., Mourao, J.M., & Thiemann, T. (1996). Coherent state transforms for spaces of connections. Journal of Functional Analysis, 135(2), 519-551.
Ashtekar, A., Lewandowski, J., Marolf, D., Mourao, J.M., & Thiemann, T. (1995). QUANTIZATION OF DIFFEOMORPHISM INVARIANT THEORIES OF CONNECTIONS WITH LOCAL DEGREES OF FREEDOM. Journal of Mathematical Physics, 36(11), 6456-6493.


Zusätzliche Publikationen (Download BibTeX)


Bahr, B., Cunningham, W.J., Dittrich, B., Glaser, L., Lang, D., Schnetter, E., & Steinhaus, S. (2019). Data on sharing data. Nature Physics, 15(8), 724-725. https://dx.doi.org/10.1038/s41567-019-0626-1
Herzog, A., & Giesel, K. (2017). Geometrical Clocks in Cosmological Perturbation Theory (Master thesis).

Zuletzt aktualisiert 2019-05-08 um 11:39