Chair for Theoretical Physics III (Quantum Gravity)

Address:
Staudtstraße 7
91058 Erlangen



Subordinate Organisational Units

Professur für Theoretische Physik
Professur für Theoretische Physik
Professur für Theoretische Physik


Research Fields

Cosmology
Gauge Theories
General Relativity and Alternative Theories of Gravity
High Energy Physics and Astroparticle Physics
Mathematical Physics
Quantum Field Theory
Quantum Gravity


Publications (Download BibTeX)

Go to first page Go to previous page 3 of 8 Go to next page Go to last page

Lanéry, S., & Thiemann, T. (2015). Projective State Spaces for Theories of Connections (Dissertation).
Stottmeister, A., & Thiemann, T. (2015). On the Embedding of Quantum Field Theory on Curved Spacetimes into Loop Quantum Gravity (Dissertation).
Wolz, F., & Sahlmann, H. (2015). On spatially diffeomorphism invariant quantizations of the bosonic string (Master thesis).
Lang, T., & Thiemann, T. (2015). Peakedness properties of SU(3) heat kernel coherent states (Master thesis).
Böhm, B., & Giesel, K. (2015). The Physical Hamiltonian of the Gowdy Model in Algebraic Quantum Gravity (Master thesis).
Thiemann, T., & Zipfel, A. (2014). Linking covariant and canonical LQG II: spin foam projector. Classical and Quantum Gravity, 31(12). https://dx.doi.org/10.1088/0264-9381/31/12/125008
Bodendorfer, N., Thiemann, T., & Thurn, A. (2014). New variables for classical and quantum gravity in all dimensions: V. Isolated horizon boundary degrees of freedom. Classical and Quantum Gravity, 31(5). https://dx.doi.org/10.1088/0264-9381/31/5/055002
Lohberger, J., & Sahlmann, H. (2014). Doubly special relativity (Bachelor thesis).
Sahlmann, H., & Wolz, F. (2014). Geometric meaning of the Penrose metric (Bachelor thesis).
Giesel, K., & Herzog, A. (2014). Lie-Punktsymmetrien erhaltende Quantisierung in der Loop-Quantenkosmologie (Bachelor thesis).
Nekovar, S., & Sahlmann, H. (2014). Gaussian Measures and Representations of the Holonomy-Flux Algebra (Master thesis).
Han, M., & Thiemann, T. (2013). Commuting simplicity and closure constraints for 4D spin-foam models. Classical and Quantum Gravity, 30(23). https://dx.doi.org/10.1088/0264-9381/30/23/235024
Bodendorfer, N., Thiemann, T., & Thurn, A. (2013). Towards loop quantum supergravity (LQSG): I. Rarita-Schwinger sector. Classical and Quantum Gravity, 30(4). https://dx.doi.org/10.1088/0264-9381/30/4/045006
Bodendorfer, N., Thiemann, T., & Thurn, A. (2013). New variables for classical and quantum gravity in all dimensions: III. Quantum theory. Classical and Quantum Gravity, 30(4). https://dx.doi.org/10.1088/0264-9381/30/4/045003
Bodendorfer, N., Thiemann, T., & Thurn, A. (2013). New variables for classical and quantum gravity in all dimensions: II. Lagrangian analysis. Classical and Quantum Gravity, 30(4). https://dx.doi.org/10.1088/0264-9381/30/4/045002
Bodendorfer, N., Thiemann, T., & Thurn, A. (2013). On the implementation of the canonical quantum simplicity constraint. Classical and Quantum Gravity, 30(4). https://dx.doi.org/10.1088/0264-9381/30/4/045005
Bodendorfer, N., Thiemann, T., & Thurn, A. (2013). Towards loop quantum supergravity (LQSG): II. p-form sector. Classical and Quantum Gravity, 30(4). https://dx.doi.org/10.1088/0264-9381/30/4/045007
Bodendorfer, N., Thiemann, T., & Thurn, A. (2013). New variables for classical and quantum gravity in all dimensions: IV. Matter coupling. Classical and Quantum Gravity, 30(4). https://dx.doi.org/10.1088/0264-9381/30/4/045004
Bodendorfer, N., Thiemann, T., & Thurn, A. (2013). New variables for classical and quantum gravity in all dimensions: I. Hamiltonian analysis. Classical and Quantum Gravity, 30(4). https://dx.doi.org/10.1088/0264-9381/30/4/045001
Thurn, A., & Thiemann, T. (2013). Higher Dimensional and Supersymmetric Extensions of Loop Quantum Gravity (Dissertation).


Publications in addition (Download BibTeX)


Bahr, B., Cunningham, W.J., Dittrich, B., Glaser, L., Lang, D., Schnetter, E., & Steinhaus, S. (2019). Data on sharing data. Nature Physics, 15(8), 724-725. https://dx.doi.org/10.1038/s41567-019-0626-1
Herzog, A., & Giesel, K. (2017). Geometrical Clocks in Cosmological Perturbation Theory (Master thesis).

Last updated on 2019-05-08 at 11:39