Lehrstuhl für Theoretische Physik

Adresse:
Staudtstraße 7
91058 Erlangen



Untergeordnete Organisationseinheiten

Professur für Theoretische Physik
Professur für Theoretische Physik
Professur für Theoretische Physik


Forschungsbereiche

Allgemeine Relativitätstheorie und Alternative Theorien der Gravitation
Eichtheorien
Hochenergiephysik und Astroteilchenphysik
Kosmologie
Mathematische Physik
Quantenfeldtheorie
Quantengravitation


Publikationen (Download BibTeX)

Go to first page Go to previous page 2 von 8 Go to next page Go to last page

Lanery, S., & Thiemann, T. (2017). Projective limits of state spaces I. Classical formalism. Journal of Geometry and Physics, 111, 6-39. https://dx.doi.org/10.1016/j.geomphys.2016.10.010
Lanery, S., & Thiemann, T. (2016). Projective loop quantum gravity. I. State space. Journal of Mathematical Physics, 57(12). https://dx.doi.org/10.1063/1.4968205
Bolliet, B., Barrau, A., Grain, J., & Schander, S. (2016). Observational exclusion of a consistent loop quantum cosmology scenario. Physical Review D, 93(12). https://dx.doi.org/10.1103/PhysRevD.93.124011
Stottmeister, A., & Thiemann, T. (2016). Coherent states, quantum gravity, and the Born-Oppenheimer approximation. III.: Applications to loop quantum gravity. Journal of Mathematical Physics, 57(8). https://dx.doi.org/10.1063/1.4960823
Liegener, K., & Thiemann, T. (2016). Towards the fundamental spectrum of the quantum Yang-Mills theory. Physical Review D - Particles, Fields, Gravitation and Cosmology, 94(2). https://dx.doi.org/10.1103/PhysRevD.94.024042
Stottmeister, A., & Thiemann, T. (2016). Coherent states, quantum gravity, and the Born-Oppenheimer approximation. II. Compact Lie groups. Journal of Mathematical Physics, 57(7). https://dx.doi.org/10.1063/1.4954803
Stottmeister, A., & Thiemann, T. (2016). Coherent states, quantum gravity, and the Born-Oppenheimer approximation. I. General considerations. Journal of Mathematical Physics, 57(6). https://dx.doi.org/10.1063/1.4954228
Zipfel, A., & Thiemann, T. (2016). Stable coherent states. Physical Review D, 93(8). https://dx.doi.org/10.1103/PhysRevD.93.084030
Stottmeister, A., & Thiemann, T. (2016). The microlocal spectrum condition, initial value formulations, and background independence. Journal of Mathematical Physics, 57(2). https://dx.doi.org/10.1063/1.4940052
Schander, S., Barrau, A., Bolliet, B., Linsefors, L., Mielczarek, J., & Grain, J. (2016). Primordial scalar power spectrum from the Euclidean big bounce. Physical Review D, 93(2). https://dx.doi.org/10.1103/PhysRevD.93.023531
Dhandhukiya, S., & Sahlmann, H. (2016). On the Hartle-Hawking state for loop quantum gravity (Master thesis).
Giesel, K., & Thiemann, T. (2015). Scalar material reference systems and loop quantum gravity. Classical and Quantum Gravity, 32(13). https://dx.doi.org/10.1088/0264-9381/32/13/135015
Stottmeister, A., & Thiemann, T. (2015). On the Embedding of Quantum Field Theory on Curved Spacetimes into Loop Quantum Gravity (Dissertation).
Wolz, F., & Sahlmann, H. (2015). On spatially diffeomorphism invariant quantizations of the bosonic string (Master thesis).
Lanéry, S., & Thiemann, T. (2015). Projective State Spaces for Theories of Connections (Dissertation).
Böhm, B., & Giesel, K. (2015). The Physical Hamiltonian of the Gowdy Model in Algebraic Quantum Gravity (Master thesis).
Lang, T., & Thiemann, T. (2015). Peakedness properties of SU(3) heat kernel coherent states (Master thesis).
Neeb, K.-H., Thiemann, T., & Sahlmann, H. (2015). Weak Poisson structures on infinite dimensional manifolds and hamiltonian actions. In V. Dobrev (Eds.), Springer Proceedings in Mathematics & Statistics. (pp. 105-136). Springer Japan.
Sahlmann, H., & Pranzetti, D. (2015). Horizon entropy with loop quantum gravity methods. Physics Letters B, 746, 209-216. https://dx.doi.org/10.1016/j.physletb.2015.04.070
Thiemann, T., & Zipfel, A. (2014). Linking covariant and canonical LQG II: spin foam projector. Classical and Quantum Gravity, 31(12). https://dx.doi.org/10.1088/0264-9381/31/12/125008


Zusätzliche Publikationen (Download BibTeX)


Herzog, A., & Giesel, K. (2017). Geometrical Clocks in Cosmological Perturbation Theory (Master thesis).

Zuletzt aktualisiert 2019-24-04 um 10:23

Link teilen