Lehrstuhl für Theoretische Physik

Adresse:
Staudtstraße 7
91058 Erlangen



Untergeordnete Organisationseinheiten

Professur für Theoretische Physik
Professur für Theoretische Physik
Professur für Theoretische Physik


Forschungsbereiche

Allgemeine Relativitätstheorie und Alternative Theorien der Gravitation
Eichtheorien
Hochenergiephysik und Astroteilchenphysik
Kosmologie
Mathematische Physik
Quantenfeldtheorie
Quantengravitation


Publikationen (Download BibTeX)

Go to first page Go to previous page 2 von 7 Go to next page Go to last page

Schander, S., Barrau, A., Bolliet, B., Linsefors, L., Mielczarek, J., & Grain, J. (2016). Primordial scalar power spectrum from the Euclidean big bounce. Physical Review D, 93(2). https://dx.doi.org/10.1103/PhysRevD.93.023531
Dhandhukiya, S., & Sahlmann, H. (2016). On the Hartle-Hawking state for loop quantum gravity (Master thesis).
Giesel, K., & Thiemann, T. (2015). Scalar material reference systems and loop quantum gravity. Classical and Quantum Gravity, 32(13). https://dx.doi.org/10.1088/0264-9381/32/13/135015
Wolz, F., & Sahlmann, H. (2015). On spatially diffeomorphism invariant quantizations of the bosonic string (Master thesis).
Lanéry, S., & Thiemann, T. (2015). Projective State Spaces for Theories of Connections (Dissertation).
Lang, T., & Thiemann, T. (2015). Peakedness properties of SU(3) heat kernel coherent states (Master thesis).
Neeb, K.-H., Thiemann, T., & Sahlmann, H. (2015). Weak Poisson structures on infinite dimensional manifolds and hamiltonian actions. In V. Dobrev (Eds.), Springer Proceedings in Mathematics & Statistics. (pp. 105-136). Springer Japan.
Böhm, B., & Giesel, K. (2015). The Physical Hamiltonian of the Gowdy Model in Algebraic Quantum Gravity (Master thesis).
Sahlmann, H., & Pranzetti, D. (2015). Horizon entropy with loop quantum gravity methods. Physics Letters B, 746, 209-216. https://dx.doi.org/10.1016/j.physletb.2015.04.070
Stottmeister, A., & Thiemann, T. (2015). On the Embedding of Quantum Field Theory on Curved Spacetimes into Loop Quantum Gravity (Dissertation).
Thiemann, T., & Zipfel, A. (2014). Linking covariant and canonical LQG II: spin foam projector. Classical and Quantum Gravity, 31(12). https://dx.doi.org/10.1088/0264-9381/31/12/125008
Bodendorfer, N., Thiemann, T., & Thurn, A. (2014). New variables for classical and quantum gravity in all dimensions: V. Isolated horizon boundary degrees of freedom. Classical and Quantum Gravity, 31(5). https://dx.doi.org/10.1088/0264-9381/31/5/055002
Lohberger, J., & Sahlmann, H. (2014). Doubly special relativity (Bachelor thesis).
Giesel, K., & Herzog, A. (2014). Lie-Punktsymmetrien erhaltende Quantisierung in der Loop-Quantenkosmologie (Bachelor thesis).
Sahlmann, H., & Wolz, F. (2014). Geometric meaning of the Penrose metric (Bachelor thesis).
Nekovar, S., & Sahlmann, H. (2014). Gaussian Measures and Representations of the Holonomy-Flux Algebra (Master thesis).
Han, M., & Thiemann, T. (2013). Commuting simplicity and closure constraints for 4D spin-foam models. Classical and Quantum Gravity, 30(23). https://dx.doi.org/10.1088/0264-9381/30/23/235024
Bodendorfer, N., Thiemann, T., & Thurn, A. (2013). Towards loop quantum supergravity (LQSG): I. Rarita-Schwinger sector. Classical and Quantum Gravity, 30(4). https://dx.doi.org/10.1088/0264-9381/30/4/045006
Bodendorfer, N., Thiemann, T., & Thurn, A. (2013). New variables for classical and quantum gravity in all dimensions: III. Quantum theory. Classical and Quantum Gravity, 30(4). https://dx.doi.org/10.1088/0264-9381/30/4/045003
Bodendorfer, N., Thiemann, T., & Thurn, A. (2013). Towards loop quantum supergravity (LQSG): II. p-form sector. Classical and Quantum Gravity, 30(4). https://dx.doi.org/10.1088/0264-9381/30/4/045007


Zusätzliche Publikationen (Download BibTeX)


Herzog, A., & Giesel, K. (2017). Geometrical Clocks in Cosmological Perturbation Theory (Master thesis).

Zuletzt aktualisiert 2016-05-05 um 04:59