Lehrstuhl für Theoretische Physik

Staudtstraße 7
91058 Erlangen

Subordinate Organisational Units

Professur für Theoretische Physik
Professur für Theoretische Physik
Professur für Theoretische Physik

Research Fields

Gauge Theories
General Relativity and Alternative Theories of Gravity
High Energy Physics and Astroparticle Physics
Mathematical Physics
Quantum Field Theory
Quantum Gravity

Publications (Download BibTeX)

Go to first page Go to previous page 1 of 8 Go to next page Go to last page

Chen, J., Han, M., Li, Y., Zeng, B., & Zhou, J. (2019). Local Density Matrices of Many-Body States in the Constant Weight Subspaces. Reports on Mathematical Physics, 83(3), 273-292. https://dx.doi.org/10.1016/S0034-4877(19)30049-7
Kisielowski, M. (2019). Relation Between Regge Calculus and BF Theory on Manifolds with Defects. Annales Henri Poincaré, 20(5), 1403-1437. https://dx.doi.org/10.1007/s00023-018-0747-6
Li, K., Han, M., Qu, D., Huang, Z., Long, G., Wan, Y.,... Laflamme, R. (2019). Measuring holographic entanglement entropy on a quantum simulator. npj Quantum Information, 5. https://dx.doi.org/10.1038/s41534-019-0145-z
Liu, H., & Han, M. (2019). Asymptotic analysis of spin foam amplitude with timelike triangles. Physical Review D, 99(8). https://dx.doi.org/10.1103/PhysRevD.99.084040
Kisielowski, M., & Lewandowski, J. (2019). Spin-foam model for gravity coupled to massless scalar field. Classical and Quantum Gravity, 36(7). https://dx.doi.org/10.1088/1361-6382/aafcc0
Giesel, K., Singh, P., & Winnekens, D. (2019). Dynamics of Dirac observables in canonical cosmological perturbation theory. Classical and Quantum Gravity, 36(8), 085009. https://dx.doi.org/10.1088/1361-6382/ab0ed3
Elizaga de Navascués, B., Mena Marugan, G.A., & Prado, S. (2019). Asymptotic diagonalization of the fermionic Hamiltonian in hybrid loop quantum cosmology. Physical Review D, 99(6). https://dx.doi.org/10.1103/PhysRevD.99.063535
Fey, S., Kapfer, S., & Schmidt, K.P. (2019). Quantum Criticality of Two-Dimensional Quantum Magnets with Long-Range Interactions. Physical Review Letters, 122(1). https://dx.doi.org/10.1103/PhysRevLett.122.017203
Sahlmann, H., Kaminski, W., & Kisielowski, M. (2018). Asymptotic analysis of the EPRL model with timelike tetrahedra. Classical and Quantum Gravity, 35(13). https://dx.doi.org/10.1088/1361-6382/aac6a4
Giesel, K., Herzog, A., & Singh, P. (2018). Gauge invariant variables for cosmological perturbation theory using geometrical clocks. Classical and Quantum Gravity, 35(15), 155012. https://dx.doi.org/10.1088/1361-6382/aacda2
Sahlmann, H., & Eder, K. (2018). Quantum theory of charged isolated horizons. Physical Review D, 97(8). https://dx.doi.org/10.1103/PhysRevD.97.086016
Elizaga de Navascués, B., Martin de Blas, D., & Mena Marugan, G. (2018). Time-dependent mass of cosmological perturbations in the hybrid and dressed metric approaches to loop quantum cosmology. Physical Review D - Particles, Fields, Gravitation and Cosmology, 97, 043523-1 - 043523-15. https://dx.doi.org/10.1103/PhysRevD.97.043523
Giesel, K., & Herzog, A. (2018). Gauge invariant canonical cosmological perturbation theory with geometrical clocks in extended phase-space - A review and applications. International Journal of Modern Physics D, 27(8), 1830005. https://dx.doi.org/10.1142/S0218271818300057
Zwicknagel, E.-A., Giesel, K., & Liegener, K. (2018). Expectation Values of Holonomy-Operators in Cosmological Coherent States for Loop Quantum Gravity (Bachelor thesis).
Weigl, S., Giesel, K., & Liegener, K. (2018). Implications from Different Regularisations for the Canonically Quantised k=1 FLRW Spacetime (Bachelor thesis).
Matas, B., Giesel, K., & Kobler, M. (2018). The Lewis-Riesenfeld Invariant in the context of a Loop Quantum Cosmology quantisation (Bachelor thesis).
Engle, J., Hanusch, M., & Thiemann, T. (2017). Uniqueness of the Representation in Homogeneous Isotropic LQC. Communications in Mathematical Physics, 354(1), 231-246. https://dx.doi.org/10.1007/s00220-017-2881-2
Lanery, S., & Thiemann, T. (2017). Projective limits of state spaces II. Quantum formalism. Journal of Geometry and Physics, 116, 10-51. https://dx.doi.org/10.1016/j.geomphys.2017.01.011
Lanery, S., & Thiemann, T. (2017). Projective loop quantum gravity. II. Searching for semi-classical states. Journal of Mathematical Physics, 58(5). https://dx.doi.org/10.1063/1.4983133
Dhandhukiya, S., & Sahlmann, H. (2017). Towards Hartle-Hawking states for connection variables. Physical Review D, 95(8). https://dx.doi.org/10.1103/PhysRevD.95.084047

Publications in addition (Download BibTeX)

Herzog, A., & Giesel, K. (2017). Geometrical Clocks in Cosmological Perturbation Theory (Master thesis).

Last updated on 2019-24-04 at 10:23