Lehrstuhl für Theoretische Physik

Adresse:
Staudtstraße 7
91058 Erlangen



Untergeordnete Organisationseinheiten

Professur für Theoretische Physik
Professur für Theoretische Physik
Professur für Theoretische Physik


Forschungsbereiche

Allgemeine Relativitätstheorie und Alternative Theorien der Gravitation
Eichtheorien
Hochenergiephysik und Astroteilchenphysik
Kosmologie
Mathematische Physik
Quantenfeldtheorie
Quantengravitation


Publikationen (Download BibTeX)

Go to first page Go to previous page 1 von 7 Go to next page Go to last page

Sahlmann, H., Kaminski, W., & Kisielowski, M. (2018). Asymptotic analysis of the EPRL model with timelike tetrahedra. Classical and Quantum Gravity, 35(13). https://dx.doi.org/10.1088/1361-6382/aac6a4
Giesel, K., Herzog, A., & Singh, P. (2018). Gauge invariant variables for cosmological perturbation theory using geometrical clocks. Classical and Quantum Gravity, 35(15), 155012. https://dx.doi.org/10.1088/1361-6382
Sahlmann, H., & Eder, K. (2018). Quantum theory of charged isolated horizons. PHYSICAL REVIEW D, 97(8). https://dx.doi.org/10.1103/PhysRevD.97.086016
Elizaga de Navascués, B., Martin de Blas, D., & Mena Marugan, G. (2018). Time-dependent mass of cosmological perturbations in the hybrid and dressed metric approaches to loop quantum cosmology. Physical Review D - Particles, Fields, Gravitation and Cosmology, 97, 043523-1 - 043523-15. https://dx.doi.org/https://doi.org/10.1103/PhysRevD.97.043523
Giesel, K., & Herzog, A. (2018). Gauge invariant canonical cosmological perturbation theory with geometrical clocks in extended phase-space - A review and applications. International Journal of Modern Physics D, 27(8), 1830005. https://dx.doi.org/10.1142/S0218271818300057
Engle, J., Hanusch, M., & Thiemann, T. (2017). Uniqueness of the Representation in Homogeneous Isotropic LQC. Communications in Mathematical Physics, 354(1), 231-246. https://dx.doi.org/10.1007/s00220-017-2881-2
Lanery, S., & Thiemann, T. (2017). Projective limits of state spaces II. Quantum formalism. Journal of Geometry and Physics, 116, 10-51. https://dx.doi.org/10.1016/j.geomphys.2017.01.011
Lanery, S., & Thiemann, T. (2017). Projective loop quantum gravity. II. Searching for semi-classical states. Journal of Mathematical Physics, 58(5). https://dx.doi.org/10.1063/1.4983133
Dhandhukiya, S., & Sahlmann, H. (2017). Towards Hartle-Hawking states for connection variables. PHYSICAL REVIEW D, 95(8). https://dx.doi.org/10.1103/PhysRevD.95.084047
Herzog, A., & Giesel, K. (2017). Geometrical Clocks in Cosmological Perturbation Theory (Master thesis).
Leitherer, A., & Giesel, K. (2017). The Schrödinger Equation of the Gowdy Model in Reduced Algebraic Quantum Gravity (Master thesis).
Lanery, S., & Thiemann, T. (2017). Projective limits of state spaces I. Classical formalism. Journal of Geometry and Physics, 111, 6-39. https://dx.doi.org/10.1016/j.geomphys.2016.10.010
Lanery, S., & Thiemann, T. (2016). Projective loop quantum gravity. I. State space. Journal of Mathematical Physics, 57(12). https://dx.doi.org/10.1063/1.4968205
Bolliet, B., Barrau, A., Grain, J., & Schander, S. (2016). Observational exclusion of a consistent loop quantum cosmology scenario. Physical Review D, 93(12). https://dx.doi.org/10.1103/PhysRevD.93.124011
Stottmeister, A., & Thiemann, T. (2016). Coherent states, quantum gravity, and the Born-Oppenheimer approximation. III.: Applications to loop quantum gravity. Journal of Mathematical Physics, 57(8). https://dx.doi.org/10.1063/1.4960823
Liegener, K., & Thiemann, T. (2016). Towards the fundamental spectrum of the quantum Yang-Mills theory. Physical Review D - Particles, Fields, Gravitation and Cosmology, 94(2). https://dx.doi.org/10.1103/PhysRevD.94.024042
Stottmeister, A., & Thiemann, T. (2016). Coherent states, quantum gravity, and the Born-Oppenheimer approximation. II. Compact Lie groups. Journal of Mathematical Physics, 57(7). https://dx.doi.org/10.1063/1.4954803
Stottmeister, A., & Thiemann, T. (2016). Coherent states, quantum gravity, and the Born-Oppenheimer approximation. I. General considerations. Journal of Mathematical Physics, 57(6). https://dx.doi.org/10.1063/1.4954228
Zipfel, A., & Thiemann, T. (2016). Stable coherent states. PHYSICAL REVIEW D, 93(8). https://dx.doi.org/10.1103/PhysRevD.93.084030
Stottmeister, A., & Thiemann, T. (2016). The microlocal spectrum condition, initial value formulations, and background independence. Journal of Mathematical Physics, 57(2). https://dx.doi.org/10.1063/1.4940052

Zuletzt aktualisiert 2016-05-05 um 04:59