→ Sahlmann, H., Kaminski, W., & Kisielowski, M. (2018). Asymptotic analysis of the EPRL model with timelike tetrahedra. Classical and Quantum Gravity, 35(13). https://dx.doi.org/10.1088/1361-6382/aac6a4 |
→ Giesel, K., Herzog, A., & Singh, P. (2018). Gauge invariant variables for cosmological perturbation theory using geometrical clocks. Classical and Quantum Gravity, 35(15), 155012. https://dx.doi.org/10.1088/1361-6382/aacda2 |
→ Sahlmann, H., & Eder, K. (2018). Quantum theory of charged isolated horizons. PHYSICAL REVIEW D, 97(8). https://dx.doi.org/10.1103/PhysRevD.97.086016 |
→ Elizaga de Navascués, B., Martin de Blas, D., & Mena Marugan, G. (2018). Time-dependent mass of cosmological perturbations in the hybrid and dressed metric approaches to loop quantum cosmology. Physical Review D - Particles, Fields, Gravitation and Cosmology, 97, 043523-1 - 043523-15. https://dx.doi.org/10.1103/PhysRevD.97.043523 |
→ Giesel, K., & Herzog, A. (2018). Gauge invariant canonical cosmological perturbation theory with geometrical clocks in extended phase-space - A review and applications. International Journal of Modern Physics D, 27(8), 1830005. https://dx.doi.org/10.1142/S0218271818300057 |
→ Engle, J., Hanusch, M., & Thiemann, T. (2017). Uniqueness of the Representation in Homogeneous Isotropic LQC. Communications in Mathematical Physics, 354(1), 231-246. https://dx.doi.org/10.1007/s00220-017-2881-2 |
→ Lanery, S., & Thiemann, T. (2017). Projective limits of state spaces II. Quantum formalism. Journal of Geometry and Physics, 116, 10-51. https://dx.doi.org/10.1016/j.geomphys.2017.01.011 |
→ Lanery, S., & Thiemann, T. (2017). Projective loop quantum gravity. II. Searching for semi-classical states. Journal of Mathematical Physics, 58(5). https://dx.doi.org/10.1063/1.4983133 |
→ Dhandhukiya, S., & Sahlmann, H. (2017). Towards Hartle-Hawking states for connection variables. PHYSICAL REVIEW D, 95(8). https://dx.doi.org/10.1103/PhysRevD.95.084047 |
→ Herzog, A., & Giesel, K. (2017). Geometrical Clocks in Cosmological Perturbation Theory (Master thesis). |
→ Leitherer, A., & Giesel, K. (2017). The Schrödinger Equation of the Gowdy Model in Reduced Algebraic Quantum Gravity (Master thesis). |
→ Lanery, S., & Thiemann, T. (2017). Projective limits of state spaces I. Classical formalism. Journal of Geometry and Physics, 111, 6-39. https://dx.doi.org/10.1016/j.geomphys.2016.10.010 |
→ Lanery, S., & Thiemann, T. (2016). Projective loop quantum gravity. I. State space. Journal of Mathematical Physics, 57(12). https://dx.doi.org/10.1063/1.4968205 |
→ Bolliet, B., Barrau, A., Grain, J., & Schander, S. (2016). Observational exclusion of a consistent loop quantum cosmology scenario. Physical Review D, 93(12). https://dx.doi.org/10.1103/PhysRevD.93.124011 |
→ Stottmeister, A., & Thiemann, T. (2016). Coherent states, quantum gravity, and the Born-Oppenheimer approximation. III.: Applications to loop quantum gravity. Journal of Mathematical Physics, 57(8). https://dx.doi.org/10.1063/1.4960823 |
→ Liegener, K., & Thiemann, T. (2016). Towards the fundamental spectrum of the quantum Yang-Mills theory. Physical Review D - Particles, Fields, Gravitation and Cosmology, 94(2). https://dx.doi.org/10.1103/PhysRevD.94.024042 |
→ Stottmeister, A., & Thiemann, T. (2016). Coherent states, quantum gravity, and the Born-Oppenheimer approximation. II. Compact Lie groups. Journal of Mathematical Physics, 57(7). https://dx.doi.org/10.1063/1.4954803 |
→ Stottmeister, A., & Thiemann, T. (2016). Coherent states, quantum gravity, and the Born-Oppenheimer approximation. I. General considerations. Journal of Mathematical Physics, 57(6). https://dx.doi.org/10.1063/1.4954228 |
→ Zipfel, A., & Thiemann, T. (2016). Stable coherent states. PHYSICAL REVIEW D, 93(8). https://dx.doi.org/10.1103/PhysRevD.93.084030 |
→ Stottmeister, A., & Thiemann, T. (2016). The microlocal spectrum condition, initial value formulations, and background independence. Journal of Mathematical Physics, 57(2). https://dx.doi.org/10.1063/1.4940052 |