Chair for Theoretical Physics III (Quantum Gravity)

Address:
Staudtstraße 7
91058 Erlangen



Subordinate Organisational Units

Professur für Theoretische Physik
Professur für Theoretische Physik
Professur für Theoretische Physik


Research Fields

Cosmology
Gauge Theories
General Relativity and Alternative Theories of Gravity
High Energy Physics and Astroparticle Physics
Mathematical Physics
Quantum Field Theory
Quantum Gravity


Publications (Download BibTeX)

Go to first page Go to previous page 1 of 8 Go to next page Go to last page

Navascues, B.E., Mena Marugan, G.A., & Thiemann, T. (2019). Hamiltonian diagonalization in hybrid quantum cosmology. Classical and Quantum Gravity, 36(18). https://dx.doi.org/10.1088/1361-6382/ab32af
Han, M., Huang, Z., & Zipfel, A. (2019). Emergent four-dimensional linearized gravity from a spin foam model. Physical Review D, 100(2). https://dx.doi.org/10.1103/PhysRevD.100.024060
Giesel, K., & Vetter, A. (2019). Reduced loop quantization with four Klein-Gordon scalar fields as reference matter. Classical and Quantum Gravity, 36(14). https://dx.doi.org/10.1088/1361-6382/ab26f4
Chen, J., Han, M., Li, Y., Zeng, B., & Zhou, J. (2019). Local Density Matrices of Many-Body States in the Constant Weight Subspaces. Reports on Mathematical Physics, 83(3), 273-292. https://dx.doi.org/10.1016/S0034-4877(19)30049-7
Kisielowski, M. (2019). Relation Between Regge Calculus and BF Theory on Manifolds with Defects. Annales Henri Poincaré, 20(5), 1403-1437. https://dx.doi.org/10.1007/s00023-018-0747-6
Li, K., Han, M., Qu, D., Huang, Z., Long, G., Wan, Y.,... Laflamme, R. (2019). Measuring holographic entanglement entropy on a quantum simulator. npj Quantum Information, 5. https://dx.doi.org/10.1038/s41534-019-0145-z
Liu, H., & Han, M. (2019). Asymptotic analysis of spin foam amplitude with timelike triangles. Physical Review D, 99(8). https://dx.doi.org/10.1103/PhysRevD.99.084040
Kisielowski, M., & Lewandowski, J. (2019). Spin-foam model for gravity coupled to massless scalar field. Classical and Quantum Gravity, 36(7). https://dx.doi.org/10.1088/1361-6382/aafcc0
Giesel, K., Singh, P., & Winnekens, D. (2019). Dynamics of Dirac observables in canonical cosmological perturbation theory. Classical and Quantum Gravity, 36(8), 085009. https://dx.doi.org/10.1088/1361-6382/ab0ed3
Elizaga de Navascués, B., Mena Marugan, G.A., & Prado, S. (2019). Asymptotic diagonalization of the fermionic Hamiltonian in hybrid loop quantum cosmology. Physical Review D, 99(6). https://dx.doi.org/10.1103/PhysRevD.99.063535
Fey, S., Kapfer, S., & Schmidt, K.P. (2019). Quantum Criticality of Two-Dimensional Quantum Magnets with Long-Range Interactions. Physical Review Letters, 122(1). https://dx.doi.org/10.1103/PhysRevLett.122.017203
Sahlmann, H., Kaminski, W., & Kisielowski, M. (2018). Asymptotic analysis of the EPRL model with timelike tetrahedra. Classical and Quantum Gravity, 35(13). https://dx.doi.org/10.1088/1361-6382/aac6a4
Giesel, K., Herzog, A., & Singh, P. (2018). Gauge invariant variables for cosmological perturbation theory using geometrical clocks. Classical and Quantum Gravity, 35(15), 155012. https://dx.doi.org/10.1088/1361-6382/aacda2
Sahlmann, H., & Eder, K. (2018). Quantum theory of charged isolated horizons. Physical Review D, 97(8). https://dx.doi.org/10.1103/PhysRevD.97.086016
Elizaga de Navascués, B., Martin de Blas, D., & Mena Marugan, G. (2018). Time-dependent mass of cosmological perturbations in the hybrid and dressed metric approaches to loop quantum cosmology. Physical Review D - Particles, Fields, Gravitation and Cosmology, 97, 043523-1 - 043523-15. https://dx.doi.org/10.1103/PhysRevD.97.043523
Zwicknagel, E.-A., Giesel, K., & Liegener, K. (2018). Expectation Values of Holonomy-Operators in Cosmological Coherent States for Loop Quantum Gravity (Bachelor thesis).
Weigl, S., Giesel, K., & Liegener, K. (2018). Implications from Different Regularisations for the Canonically Quantised k=1 FLRW Spacetime (Bachelor thesis).
Matas, B., Giesel, K., & Kobler, M. (2018). The Lewis-Riesenfeld Invariant in the context of a Loop Quantum Cosmology quantisation (Bachelor thesis).
Giesel, K., & Herzog, A. (2018). Gauge invariant canonical cosmological perturbation theory with geometrical clocks in extended phase-space - A review and applications. International Journal of Modern Physics D, 27(8), 1830005. https://dx.doi.org/10.1142/S0218271818300057
Engle, J., Hanusch, M., & Thiemann, T. (2017). Uniqueness of the Representation in Homogeneous Isotropic LQC. Communications in Mathematical Physics, 354(1), 231-246. https://dx.doi.org/10.1007/s00220-017-2881-2


Publications in addition (Download BibTeX)


Bahr, B., Cunningham, W.J., Dittrich, B., Glaser, L., Lang, D., Schnetter, E., & Steinhaus, S. (2019). Data on sharing data. Nature Physics, 15(8), 724-725. https://dx.doi.org/10.1038/s41567-019-0626-1
Herzog, A., & Giesel, K. (2017). Geometrical Clocks in Cosmological Perturbation Theory (Master thesis).

Last updated on 2019-05-08 at 11:39